996 resultados para CO2-laser-MAG-hybridihitsaus
Resumo:
Laser additive manufacturing (LAM), known also as 3D printing, is a powder bed fusion (PBF) type of additive manufacturing (AM) technology used to manufacture metal parts layer by layer by assist of laser beam. The development of the technology from building just prototype parts to functional parts is due to design flexibility. And also possibility to manufacture tailored and optimised components in terms of performance and strength to weight ratio of final parts. The study of energy and raw material consumption in LAM is essential as it might facilitate the adoption and usage of the technique in manufacturing industries. The objective this thesis was find the impact of LAM on environmental and economic aspects and to conduct life cycle inventory of CNC machining and LAM in terms of energy and raw material consumption at production phases. Literature overview in this thesis include sustainability issues in manufacturing industries with focus on environmental and economic aspects. Also life cycle assessment and its applicability in manufacturing industry were studied. UPLCI-CO2PE! Initiative was identified as mostly applied exiting methodology to conduct LCI analysis in discrete manufacturing process like LAM. Many of the reviewed literature had focused to PBF of polymeric material and only few had considered metallic materials. The studies that had included metallic materials had only measured input and output energy or materials of the process and compared to different AM systems without comparing to any competitive process. Neither did any include effect of process variation when building metallic parts with LAM. Experimental testing were carried out to make dissimilar samples with CNC machining and LAM in this thesis. Test samples were designed to include part complexity and weight reductions. PUMA 2500Y lathe machine was used in the CNC machining whereas a modified research machine representing EOSINT M-series was used for the LAM. The raw material used for making the test pieces were stainless steel 316L bar (CNC machined parts) and stainless steel 316L powder (LAM built parts). An analysis of power, time, and the energy consumed in each of the manufacturing processes on production phase showed that LAM utilises more energy than CNC machining. The high energy consumption was as result of duration of production. Energy consumption profiles in CNC machining showed fluctuations with high and low power ranges. LAM energy usage within specific mode (standby, heating, process, sawing) remained relatively constant through the production. CNC machining was limited in terms of manufacturing freedom as it was not possible to manufacture all the designed sample by machining. And the one which was possible was aided with large amount of material removed as waste. Planning phase in LAM was shorter than in CNC machining as the latter required many preparation steps. Specific energy consumption (SEC) were estimated in LAM based on the practical results and assumed platform utilisation. The estimated platform utilisation showed SEC could reduce when more parts were placed in one build than it was in with the empirical results in this thesis (six parts).
Resumo:
Tässä kandidaatintyössä tutkitaan suojakaasun ja kaarityypin vaikutuksia roiskeisuuden muodostumiselle teräksen MAG-hitsauksessa (nro. 135). Roiskeisuuden tutkimisessa tutkitaan kolmea (3) eri kaarityyppiä ja kahta (2) eri suojakaasua ja niiden keskenäisiä vaikutuksia roiskeiden syntymiselle. Tutkittavat kaarityypit ovat pulssi-, kuumakaari sekä Kemppi Oy:n WiseFusion erikoiskaarisovellus. Suojakaasuina käyetään AGAn Corgon 3 ja Mison 18 suojakaasuja. Hitsauskokeita suoritetaan kuusi (6) kappaletta alapienana jalkoasennossa (PA). Työn alussa perehdytään MAG-hitsauksen laitteistoon ja teoriaan sekä perehdytään mitkä eri asiat vaikuttavat roiskeiden muodostumiseen. Työn lopussa verrataan tieteellisistä julkaisuista löydettyjä tietoja ja tuloksia itsetehtyihin koetuloksiin.
Resumo:
Tämän työn tavoitteena oli hitsata tandem MAG –laitteistolla 25 mm paksua Ruukin E500 TMCP terästä. Työssä oli tarkoituksena vähentää railotilavuutta mahdollisimman paljon sekä suorittaa testihitsaukset 0.8 kJ/mm sekä 2.5 kJ/mm lämmöntuonneilla. Teoriaosuudessa käsiteltiin Tandem MAG-hitsaukseen, sen tuottavuuteen ja laatukysymyksiin liittyviä asioita sekä siinä perehdyttiin suurlujuusteräksien käyttöön hitsauksessa sekä laivanrakennuksessa. Kokeellisessa osuudessa perehdyttiin hitsauksessa huomattuihin etuihin, ongelmiin sekä ongelmien ratkaisumahdollisuuksiin. Hitsausliitoksen mekaaniset ominaisuudet tutkittiin rikkomattomin sekä rikkovin menetelmin. Alustavat hitsausohjeet luotiin kummallekin lämmöntuonnille. Testaukset aloitettiin 30 º railokulmalla pienentäen kulmaa mahdollisuuksien mukaan. Testauksissa ei saatu hitsattua onnistuneesti alle 30 º railokulmalla. Hitsaustestien aikana huomattiin magneettisen puhalluksen vaikutus hitsaustapahtumaan. Kaasunvirtausnopeuden tuli olla tietyn suuruinen jotta palkokerrokset onnistuivat ilman huokoisuusongelmaa. Pienemmällä lämmöntuonnilla hitsattaessa kaasunvirtausnopeudet olivat tärkeämpiä hitsatessa ylempiä palkokerroksia. Kääntämällä hitsauspoltinta sivuttaissuunnassa 7-10 astetta auttoi ehkäisemään reunahaavan syntymistä. Rikkovista menetelmistä testitulokset olivat hyväksyttyjä kaikkien muiden paitsi päittäishitsin sivutaivutuskokeen osalta.
Resumo:
Työn tavoitteena oli kartoittaa MIG/MAG-hitsauslaitteiden toimivuutta kylmissä käyttöolosuhteissa. Työn tarkoituksena oli selvittää miten kylmässä hitsauslaitteet toimivat, mitä ongelmia kylmä käyttölämpötila voi aiheuttaa ja miten hitsauslaitteiden kylmänkestävyyttä voidaan parantaa.
Resumo:
This study is a literature review on laser scribing in monolithically interconnected thin-film PV modules, focusing on efficiency of modules based on absorber materials CIGS, CdTe and a-Si. In thin-film PV module manufacturing scribing is used to interconnect individual cells monolithically by P1, P2 and P3 scribes. Laser scribing has several advantages compared to mechanical scribing for this purpose. However, laser scribing of thin-films can be a challenging process and may induce efficiency reducing defects. Some of these defects can be avoided by improving optimisation or processing methods.
Resumo:
[1:540000].
Resumo:
We determined the effects of helium-neon (He-Ne) laser irradiation on wound healing dynamics in mice treated with steroidal and non-steroidal anti-inflammatory agents. Male albino mice, 28-32 g, were randomized into 6 groups of 6 animals each: control (C), He-Ne laser (L), dexamethasone (D), D + L, celecoxib (X), and X + L. D and X were injected im at doses of 5 and 22 mg/kg, respectively, 24 h before the experiment. A 1-cm long surgical wound was made with a scalpel on the abdomens of the mice. Animals from groups L, D + L and X + L were exposed to 4 J (cm²)-1 day-1 of He-Ne laser for 12 s and were sacrificed on days 1, 2, or 3 after the procedure, when skin samples were taken for histological examination. A significant increase of collagen synthesis was observed in group L compared with C (168 ± 20 vs 63 ± 8 mm²). The basal cellularity values on day 1 were: C = 763 ± 47, L = 1116 ± 85, D = 376 ± 24, D + L = 698 ± 31, X = 453 ± 29, X + L = 639 ± 32 U/mm². These data show that application of L increases while D and X decrease the inflammatory cellularity compared with C. They also show that L restores the diminished cellularity induced by the anti-inflammatory drugs. We suggest that He-Ne laser promotes collagen formation and restores the baseline cellularity after pharmacological inhibition, indicating new perspectives for laser therapy aiming to increase the healing process when anti-inflammatory drugs are used.
Resumo:
In this thesis the effect of focal point parameters in fiber laser welding of structural steel is studied. The goal is to establish relations between laser power, focal point diameter and focal point position with the resulting quality, weld-bead geometry and hardness of the welds. In the laboratory experiments, AB AH36 shipbuilding steel was welded in an I-butt joint configuration using IPG YLS-10000 continuous wave fiber laser. The quality of the welds produced were evaluated based on standard SFS-EN ISO 13919-1. The weld-bead geometry was defined from the weld cross-sections and Vickers hardness test was used to measure hardness's from the middle of the cross-sections. It was shown that all the studied focal point parameters have an effect on the quality, weld-bead geometry and hardness of the welds produced.
Resumo:
Invokaatio: D.D.
Resumo:
Climatic changes threaten the planet. Most articles related to the subject present estimates of the disasters expected to occur, but few have proposed ways to deal with the impending menaces. One such threat is the global warming caused by the continuous increase in CO2 emissions leading to rising ocean levels due to the increasing temperatures of the polar regions. This threat is assumed to eventually cause the death of hundreds of millions of people. We propose to desalinize ocean water as a means to reduce the rise of ocean levels and to use this water for populations that need good quality potable water, precisely in the poorest regions of the planet. Technology is available in many countries to provide desalinated water at a justifiable cost considering the lives threatened both in coastal and desertified areas.
Resumo:
This study determined the effects of gallium-aluminum-arsenide laser (GaAlAs), gallium-arsenide laser (GaAs) and Dersani® healing ointment on skin wounds in Wistar rats. The parameters analyzed were: type I and III collagen fiber concentrations as well as the rate of wound closure. Five wounds, 12 mm in diameter, were made on the animals’ backs. The depth of the surgical incision was controlled by removing the epithelial tissue until the dorsal muscular fascia was exposed. The animals were anesthetized with ketamine and xylazine via intraperitoneal injection. The rats were randomly divided into five groups of 6 animals each, according to the treatment received. Group 1 (L4): GaAs laser (4 J/cm²); group 2 (L30): GaAlAs laser (30 J/cm²); group 3 (L60): GaAlAs laser (60 J/cm²); group 4 (D): Dersani® ointment; group 5 (control): 0.9% saline. The applications were made daily over a period of 20 days. Tissue fragments were stained with picrosirius to distinguish type I collagen from type III collagen. The collagen fibers were photo-documented and analyzed using the Quantum software based on the primary color spectrum (red, yellow and blue). Significant results for wound closing rate were obtained for group 1 (L4), 7.37 mm/day. The highest concentration of type III collagen fibers was observed in group 2 (L30; 37.80 ± 7.10%), which differed from control (29.86 ± 5.15%) on the 20th day of treatment. The type I collagen fibers of group 1 (L4; 2.67 ± 2.23%) and group 2 (L30; 2.87 ± 2.40%) differed significantly from control (1.77 ± 2.97%) on the 20th day of the experiment.
Resumo:
Painovuosi nimekkeestä.
Resumo:
The objective of the present study was to develop a quantitative method to evaluate laser-induced choroidal neovascularization (CNV) in a rat model using Heidelberg Retina Angiograph 2 (HRA2) imaging. The expression of two heparan sulfate proteoglycans (HSPG) related to inflammation and angiogenesis was also investigated. CNV lesions were induced with argon laser in 21 heterozygous Zucker rats and after three weeks a fluorescein angiogram and autofluorescence exams were performed using HRA2. The area and greatest linear dimension were measured by two observers not aware of the protocol. Bland-Altman plots showed agreement between the observers, suggesting that the technique was reproducible. After fluorescein angiogram, HSPG (perlecan and syndecan-4) were analyzed by real-time RT-PCR and immunohistochemistry. There was a significant increase in the expression of perlecan and syndecan-4 (P < 0.0001) in retinas bearing CNV lesions compared to control retinas. The expression of these two HSPG increased with increasing CNV area. Immunohistochemistry demonstrated that the rat retina damaged with laser shots presented increased expression of perlecan and syndecan-4. Moreover, we observed that the overexpression occurred in the outer layer of the retina, which is related to choroidal damage. It was possible to develop a standardized quantitative method to evaluate CNV in a rat model using HRA2. In addition, we presented data indicating that the expression of HSPG parallels the area of CNV lesion. The understanding of these events offers opportunities for studies of new therapeutic interventions targeting these HSPG.