883 resultados para CLOUD CONDENSATION NUCLEI
Resumo:
The Mobile Cloud Networking project develops among others, several virtualized services and applications, in particular: (1) IP Multimedia Subsystem as a Service that gives the possibility to deploy a virtualized and on-demand instance of the IP Multimedia Subsystem platform, (2) Digital Signage Service as a Service that is based on a re-designed Digital Signage Service architecture, adopting the cloud computing principles, and (3) Information Centric Networking/Content Delivery Network as a Service that is used for distributing, caching and migrating content from other services. Possible designs for these virtualized services and applications have been identified and are being implemented. In particular, the architectures of the mentioned services were specified, adopting cloud computing principles, such as infrastructure sharing, elasticity, on-demand and pay-as-you-go. The benefits of Reactive Programming paradigm are presented in the context of Interactive Cloudified Digital Signage services in a Mobile Cloud Platform, as well as the benefit of interworking between different Mobile Cloud Networking Services as Digital Signage Service and Content Delivery Network Service for better performance of Video on Demand content deliver. Finally, the management of Service Level Agreements and the support of rating, charging and billing has also been considered and defined.
Resumo:
Compared to μ→eγ and μ→eee, the process μ→e conversion in nuclei receives enhanced contributions from Higgs-induced lepton flavor violation. Upcoming μ→e conversion experiments with drastically increased sensitivity will be able to put extremely stringent bounds on Higgs-mediated μ→e transitions. We point out that the theoretical uncertainties associated with these Higgs effects, encoded in the couplings of quark scalar operators to the nucleon, can be accurately assessed using our recently developed approach based on SU(2) chiral perturbation theory that cleanly separates two- and three-flavor observables. We emphasize that with input from lattice QCD for the coupling to strangeness fNs, hadronic uncertainties are appreciably reduced compared to the traditional approach where fNs is determined from the pion-nucleon σ term by means of an SU(3) relation. We illustrate this point by considering Higgs-mediated lepton flavor violation in the standard model supplemented with higher-dimensional operators, the two-Higgs-doublet model with generic Yukawa couplings, and the minimal supersymmetric standard model. Furthermore, we compare bounds from present and future μ→e conversion and μ→eγ experiments.
Resumo:
Cloud Computing has evolved to become an enabler for delivering access to large scale distributed applications running on managed network-connected computing systems. This makes possible hosting Distributed Enterprise Information Systems (dEISs) in cloud environments, while enforcing strict performance and quality of service requirements, defined using Service Level Agreements (SLAs). {SLAs} define the performance boundaries of distributed applications, and are enforced by a cloud management system (CMS) dynamically allocating the available computing resources to the cloud services. We present two novel VM-scaling algorithms focused on dEIS systems, which optimally detect most appropriate scaling conditions using performance-models of distributed applications derived from constant-workload benchmarks, together with SLA-specified performance constraints. We simulate the VM-scaling algorithms in a cloud simulator and compare against trace-based performance models of dEISs. We compare a total of three SLA-based VM-scaling algorithms (one using prediction mechanisms) based on a real-world application scenario involving a large variable number of users. Our results show that it is beneficial to use autoregressive predictive SLA-driven scaling algorithms in cloud management systems for guaranteeing performance invariants of distributed cloud applications, as opposed to using only reactive SLA-based VM-scaling algorithms.
Resumo:
The sensitivity of the gas flow field to changes in different initial conditions has been studied for the case of a highly simplified cometary nucleus model. The nucleus model simulated a homogeneously outgassing sphere with a more active ring around an axis of symmetry. The varied initial conditions were the number density of the homogeneous region, the surface temperature, and the composition of the flow (varying amounts of H2O and CO2) from the active ring. The sensitivity analysis was performed using the Polynomial Chaos Expansion (PCE) method. Direct Simulation Monte Carlo (DSMC) was used for the flow, thereby allowing strong deviations from local thermal equilibrium. The PCE approach can be used to produce a sensitivity analysis with only four runs per modified input parameter and allows one to study and quantify non-linear responses of measurable parameters to linear changes in the input over a wide range. Hence the PCE allows one to obtain a functional relationship between the flow field properties at every point in the inner coma and the input conditions. It is for example shown that the velocity and the temperature of the background gas are not simply linear functions of the initial number density at the source. As probably expected, the main influence on the resulting flow field parameter is the corresponding initial parameter (i.e. the initial number density determines the background number density, the temperature of the surface determines the flow field temperature, etc.). However, the velocity of the flow field is also influenced by the surface temperature while the number density is not sensitive to the surface temperature at all in our model set-up. Another example is the change in the composition of the flow over the active area. Such changes can be seen in the velocity but again not in the number density. Although this study uses only a simple test case, we suggest that the approach, when applied to a real case in 3D, should assist in identifying the sensitivity of gas parameters measured in situ by, for example, the Rosetta spacecraft to the surface boundary conditions and vice versa.
Resumo:
Cloud Computing enables provisioning and distribution of highly scalable services in a reliable, on-demand and sustainable manner. However, objectives of managing enterprise distributed applications in cloud environments under Service Level Agreement (SLA) constraints lead to challenges for maintaining optimal resource control. Furthermore, conflicting objectives in management of cloud infrastructure and distributed applications might lead to violations of SLAs and inefficient use of hardware and software resources. This dissertation focusses on how SLAs can be used as an input to the cloud management system, increasing the efficiency of allocating resources, as well as that of infrastructure scaling. First, we present an extended SLA semantic model for modelling complex service-dependencies in distributed applications, and for enabling automated cloud infrastructure management operations. Second, we describe a multi-objective VM allocation algorithm for optimised resource allocation in infrastructure clouds. Third, we describe a method of discovering relations between the performance indicators of services belonging to distributed applications and then using these relations for building scaling rules that a CMS can use for automated management of VMs. Fourth, we introduce two novel VM-scaling algorithms, which optimally scale systems composed of VMs, based on given SLA performance constraints. All presented research works were implemented and tested using enterprise distributed applications.
Resumo:
Commoditization and virtualization of wireless networks are changing the economics of mobile networks to help network providers (e.g., MNO, MVNO) move from proprietary and bespoke hardware and software platforms toward an open, cost-effective, and flexible cellular ecosystem. In addition, rich and innovative local services can be efficiently created through cloudification by leveraging the existing infrastructure. In this work, we present RANaaS, which is a cloudified radio access network delivered as a service. RANaaS provides the service life-cycle of an ondemand, elastic, and pay as you go 3GPP RAN instantiated on top of the cloud infrastructure. We demonstrate an example of realtime cloudified LTE network deployment using the OpenAirInterface LTE implementation and OpenStack running on commodity hardware as well as the flexibility and performance of the platform developed.
Resumo:
The objective of this article is to demonstrate the feasibility of on-demand creation of cloud-based elastic mobile core networks, along with their lifecycle management. For this purpose the article describes the key elements to realize the architectural vision of EPC as a Service, an implementation option of the Evolved Packet Core, as specified by 3GPP, which can be deployed in cloud environments. To meet several challenging requirements associated with the implementation of EPC over a cloud infrastructure and providing it “as a Service,” this article presents a number of different options, each with different characteristics, advantages, and disadvantages. A thorough analysis comparing the different implementation options is also presented.
Resumo:
Software development teams increasingly adopt platform-as-a-service (PaaS), i.e., cloud services that make software development infrastructure available over the internet. Yet, empirical evidence of whether and how software development work changes with the use of PaaS is difficult to find. We performed a grounded-theory study to explore the affordances of PaaS for software development teams. We find that PaaS enables software development teams to enforce uniformity, to exploit knowledge embedded in technology, to enhance agility, and to enrich jobs. These affordances do not arise in a vacuum. Their emergence is closely interwoven with changes in methodologies, roles, and norms that give rise to self-organizing, loosely coupled teams. Our study provides rich descriptions of PaaS-based software development and an emerging theory of affordances of PaaS for software development teams.
Resumo:
Advancements in cloud computing have enabled the proliferation of distributed applications, which require management and control of multiple services. However, without an efficient mechanism for scaling services in response to changing workload conditions, such as number of connected users, application performance might suffer, leading to violations of Service Level Agreements (SLA) and possible inefficient use of hardware resources. Combining dynamic application requirements with the increased use of virtualised computing resources creates a challenging resource Management context for application and cloud-infrastructure owners. In such complex environments, business entities use SLAs as a means for specifying quantitative and qualitative requirements of services. There are several challenges in running distributed enterprise applications in cloud environments, ranging from the instantiation of service VMs in the correct order using an adequate quantity of computing resources, to adapting the number of running services in response to varying external loads, such as number of users. The application owner is interested in finding the optimum amount of computing and network resources to use for ensuring that the performance requirements of all her/his applications are met. She/he is also interested in appropriately scaling the distributed services so that application performance guarantees are maintained even under dynamic workload conditions. Similarly, the infrastructure Providers are interested in optimally provisioning the virtual resources onto the available physical infrastructure so that her/his operational costs are minimized, while maximizing the performance of tenants’ applications. Motivated by the complexities associated with the management and scaling of distributed applications, while satisfying multiple objectives (related to both consumers and providers of cloud resources), this thesis proposes a cloud resource management platform able to dynamically provision and coordinate the various lifecycle actions on both virtual and physical cloud resources using semantically enriched SLAs. The system focuses on dynamic sizing (scaling) of virtual infrastructures composed of virtual machines (VM) bounded application services. We describe several algorithms for adapting the number of VMs allocated to the distributed application in response to changing workload conditions, based on SLA-defined performance guarantees. We also present a framework for dynamic composition of scaling rules for distributed service, which used benchmark-generated application Monitoring traces. We show how these scaling rules can be combined and included into semantic SLAs for controlling allocation of services. We also provide a detailed description of the multi-objective infrastructure resource allocation problem and various approaches to satisfying this problem. We present a resource management system based on a genetic algorithm, which performs allocation of virtual resources, while considering the optimization of multiple criteria. We prove that our approach significantly outperforms reactive VM-scaling algorithms as well as heuristic-based VM-allocation approaches.