966 resultados para CHROMOSOME NUMBERS
Resumo:
Prenatal diagnosis is traditionally made via invasive procedures such as amniocentesis and chorionic villus sampling (CVS). However, both procedures carry a risk of complications, including miscarriage. Many groups have spent years searching for a way to diagnose a chromosome aneuploidy without putting the fetus or the mother at risk for complications. Non-invasive prenatal testing (NIPT) for chromosome aneuploidy became commercially available in the fall of 2011, with detection rates similar to those of invasive procedures for the common autosomal aneuploidies (Palomaki et al., 2011; Ashoor et al. 2012; Bianchi et al. 2012). Eventually NIPT may become the diagnostic standard of care and reduce invasive procedure-related losses (Palomaki et al., 2011). The integration of NIPT into clinical practice has potential to revolutionize prenatal diagnosis; however, it also raises some crucial issues for practitioners. Now that the test is clinically available, no studies have looked at the physicians that will be ordering the testing or referring patients to practitioners who do. This study aimed to evaluate the attitudes of OB/GYN’s and how they are incorporating the test into clinical practice. Our study shows that most physicians are offering this new, non-invasive technology to their patients, and that their practices were congruent with the literature and available professional society opinions. Those physicians who do not offer NIPT to their patients would like more literature on the topic as well as instructive guidelines from their professional societies. Additionally, this study shows that the practices and attitudes of MFMs and OBs differ. Our population feels that the incorporation of NIPT will change their practices by lowering the amount of invasive procedures, possibly replacing maternal serum screening, and that it will simplify prenatal diagnosis. However, those physicians who do not offer NIPT to their patients are not quite sure how the test will affect their clinical practice. From this study we are able to glean how physicians are incorporating this new technology into their practice and how they feel about the addition to their repertoire of tests. This knowledge gives insight as to how to best move forward with the quickly changing field of prenatal diagnosis.
Resumo:
Chronic myelogenous leukemia (CML) is characterized cytogenetically by the presence of the Philadelphia chromosome and clinically by the clonal expansion of the hematopoietic stem cells and the accumulation of large numbers of myeloid cells. Philadelphia chromosome results from the reciprocal translocation between chromosomes 9 and 22 [t(9;22)(324;q11)], which fuses parts of the ABL proto-oncogene to 5′ portions of the BCR gene. The product of the fused gene is Bcr-Abl oncoprotein. Bcr-Abl oncoprotein has elevated protein tyrosine kinase activity, and is the cause of Philadelphia chromosome associated leukemias. The Bcr sequence in the fusion protein is crucial for the activation of Abl kinase activity and transforming phenotype of Bcr-Abl oncoprotein. Although the Bcr-Abl oncoprotein has been studied extensively, its normal counterpart, the Bcr protein, has been less studied and its function is not well understood. At this point, Bcr is known to encode a novel serine/threonine protein kinase. In Bcr-Abl positive leukemia cells, we found that the serine kinase activity of Bcr is impaired by tyrosine phosphorylation. Both the Bcr protein sequences within Bcr-Abl and the normal cellular Bcr protein lack serine/threonine kinase activity when they become phosphorylated on tyrosine residues by Bcr-Abl. Therefore, the goal of this study was to investigate the role of Bcr in Bcr-Abl positive leukemia cells. We found that overexpression of Bcr can inhibit Bcr-Abl tyrosine kinase activity, and the inhibition is dependent on its intact serine/threonine kinase function. Using the tet repressible promoter system, we demonstrated that Bcr when induced in Bcr-Abl positive leukemia cells inhibited the Bcr-Abl oncoprotein tyrosine kinase. Furthermore, induction of Bcr also increased the number of cells undergoing apoptosis and inhibited the transforming ability of Bcr-Abl. In contrast to the wild-type Bcr, the kinase-inactive mutant of Bcr (Y328F/Y360F) had no effects on Bcr-Abl tyrosine kinase in cells. Results from other experiments indicated that phosphoserine-containing Bcr sequences within the first exon, which are known to bind to the Abl SH2 domain, are responsible for observed inhibition of the Bcr-Abl tyrosine kinase. Several lines of evidence suggest that the phosphoserine form of Bcr, which binds to the Abl SH2 domain, strongly inhibits the Abl tyrosine kinase domain of Bcr-Abl Previously published findings from our laboratory have also shown that Bcr is phosphorylated on tyrosine residue 177 in Bcr-Abl positive cells and that this form of Bcr recruits the Grb2 adaptor protein, which is known to activate the Ras pathway. These findings implicate Bcr as an effector of Bcr-Abl's oncogenic activity. Therefore based on the findings presented above, we propose a model for dual Function of Bcr in Bcr-Abl positive leukemia cells. Bcr, when active as a serine/threonine kinase and thus autophosphorylating its own serine residues, inhibits Bcr-Abl's oncogenic functions. However, when Ber is tyrosine phosphorylated, its Bcr-Abl inhibitory function is neutralized thus allowing Bcr-Abl to exert its full oncogenic potential. Moreover, tyrosine phosphorylated Bcr would compliment Bcr-Abl's neoplastic effects by the activation of the Ras signaling pathway. ^
Resumo:
Findings made in 31 catches with an Isaacs-Kidd midwater trawl in the light (09.00-16.00) and dark (21.00-04.00) periods of a day within a survey area of about 100 sq. miles with approximate center coordinates of 13°S and 78°E have been used to investigate vertical distribution of the main groups of sound-scattering fishes (35 species of the family Myctophidae and 16 species of other families). It has been shown that during daylight hours all fishes sink to depths deeper than 400 m. Data are presented concerning the fish population of night-time sound-scattering layers at depths of 70-150 m and about 400 m and of the daytime ones at depths of about 450 m.