938 resultados para CHEST-WALL MOTION
Resumo:
We discuss the feasibility of wireless terahertz communications links deployed in a metropolitan area and model the large-scale fading of such channels. The model takes into account reception through direct line of sight, ground and wall reflection, as well as diffraction around a corner. The movement of the receiver is modeled by an autonomous dynamic linear system in state space, whereas the geometric relations involved in the attenuation and multipath propagation of the electric field are described by a static nonlinear mapping. A subspace algorithm in conjunction with polynomial regression is used to identify a single-output Wiener model from time-domain measurements of the field intensity when the receiver motion is simulated using a constant angular speed and an exponentially decaying radius. The identification procedure is validated by using the model to perform q-step ahead predictions. The sensitivity of the algorithm to small-scale fading, detector noise, and atmospheric changes are discussed. The performance of the algorithm is tested in the diffraction zone assuming a range of emitter frequencies (2, 38, 60, 100, 140, and 400 GHz). Extensions of the simulation results to situations where a more complicated trajectory describes the motion of the receiver are also implemented, providing information on the performance of the algorithm under a worst case scenario. Finally, a sensitivity analysis to model parameters for the identified Wiener system is proposed.
Resumo:
The usefulness of motor subtypes of delirium is unclear due to inconsistency in sub-typing methods and a lack of validation with objective measures of activity. The activity of 40 patients was measured with 24 h accelerometry monitoring. Patients with Diagnostic and Statistical Manual of Mental Disorders, fourth edition (DSM-IV) delirium (n = 30) were allocated into hyperactive, hypoactive and mixed motor subtypes. Delirium subtypes differed in relation to overall amount of activity, including movement in both sagittal and transverse planes. Differences were greater in the daytime and during the early evening ‘sundowning’ period. Frequency of postural changes was the most discriminating measure examined. Clinical subtypes of delirium defined by observed motor behaviour on the ward differ in electronically measured activity levels.
Resumo:
This paper presents a study investigating how the performance of motion-impaired computer users in point and click tasks varies with target distance (A), target width (W), and force-feedback gravity well width (GWW). Six motion-impaired users performed point and click tasks across a range of values for A, W, and GWW. Times were observed to increase with A, and to decrease with W. Times also improved with GWW, and, with the addition of a gravity well, a greater improvement was observed for smaller targets than for bigger ones. It was found that Fitts Law gave a good description of behaviour for each value of GWW, and that gravity wells reduced the effect of task difficulty on performance. A model based on Fitts Law is proposed, which incorporates the effect of GWW on movement time. The model accounts for 88.8% of the variance in the observed data.
Resumo:
This paper presents a novel two-pass algorithm constituted by Linear Hashtable Motion Estimation Algorithm (LHMEA) and Hexagonal Search (HEXBS) for block base motion compensation. On the basis of research from previous algorithms, especially an on-the-edge motion estimation algorithm called hexagonal search (HEXBS), we propose the LHMEA and the Two-Pass Algorithm (TPA). We introduced hashtable into video compression. In this paper we employ LHMEA for the first-pass search in all the Macroblocks (MB) in the picture. Motion Vectors (MV) are then generated from the first-pass and are used as predictors for second-pass HEXBS motion estimation, which only searches a small number of MBs. The evaluation of the algorithm considers the three important metrics being time, compression rate and PSNR. The performance of the algorithm is evaluated by using standard video sequences and the results are compared to current algorithms, Experimental results show that the proposed algorithm can offer the same compression rate as the Full Search. LHMEA with TPA has significant improvement on HEXBS and shows a direction for improving other fast motion estimation algorithms, for example Diamond Search.
Resumo:
The structure of single wall peptide nanotubes is presented for the model surfactant-like peptide A6K. Capillary flow alignment of a sample in the nematic phase at high concentration in water leads to oriented X-ray diffraction patterns. Analysis of these, accompanied by molecular dynamics simulations, suggests the favourable self-assembly of antiparallel peptide dimers into beta-sheet ribbons that wrap helically to form the nanotube wall.
Resumo:
Embodied theories of cognition propose that neural substrates used in experiencing the referent of a word, for example perceiving upward motion, should be engaged in weaker form when that word, for example ‘rise’, is comprehended. Motivated by the finding that the perception of irrelevant background motion at near-threshold, but not supra-threshold, levels interferes with task execution, we assessed whether interference from near-threshold background motion was modulated by its congruence with the meaning of words (semantic content) when participants completed a lexical decision task (deciding if a string of letters is a real word or not). Reaction times for motion words, such as ‘rise’ or ‘fall’, were slower when the direction of visual motion and the ‘motion’ of the word were incongruent — but only when the visual motion was at nearthreshold levels. When motion was supra-threshold, the distribution of error rates, not reaction times, implicated low-level motion processing in the semantic processing of motion words. As the perception of near-threshold signals is not likely to be influenced by strategies, our results support a close contact between semantic information and perceptual systems.
Resumo:
Recent theories propose that semantic representation and sensorimotor processing have a common substrate via simulation. We tested the prediction that comprehension interacts with perception, using a standard psychophysics methodology.While passively listening to verbs that referred to upward or downward motion, and to control verbs that did not refer to motion, 20 subjects performed a motion-detection task, indicating whether or not they saw motion in visual stimuli containing threshold levels of coherent vertical motion. A signal detection analysis revealed that when verbs were directionally incongruent with the motion signal, perceptual sensitivity was impaired. Word comprehension also affected decision criteria and reaction times, but in different ways. The results are discussed with reference to existing explanations of embodied processing and the potential of psychophysical methods for assessing interactions between language and perception.
Resumo:
This paper addresses the statistical mechanics of ideal polymer chains next to a hard wall. The principal quantity of interest, from which all monomer densities can be calculated, is the partition function, G N(z) , for a chain of N discrete monomers with one end fixed a distance z from the wall. It is well accepted that in the limit of infinite N , G N(z) satisfies the diffusion equation with the Dirichlet boundary condition, G N(0) = 0 , unless the wall possesses a sufficient attraction, in which case the Robin boundary condition, G N(0) = - x G N ′(0) , applies with a positive coefficient, x . Here we investigate the leading N -1/2 correction, D G N(z) . Prior to the adsorption threshold, D G N(z) is found to involve two distinct parts: a Gaussian correction (for z <~Unknown control sequence '\lesssim' aN 1/2 with a model-dependent amplitude, A , and a proximal-layer correction (for z <~Unknown control sequence '\lesssim' a described by a model-dependent function, B(z).
Resumo:
It is proposed that post-harvest longevity and appearance of salad crops is closely linked to pre-harvest leaf morphology (cell and leaf size) and biophysical structure (leaf strength). Transgenic lettuce plants (Lactuca sativa cv. Valeria) were produced in which the production of the cell wall-modifying enzyme xyloglucan endotransglucosylase/hydrolase (XTH) was down-regulated by antisense inhibition. Independently transformed lines were shown to have multiple members of the LsXTH gene family down-regulated in mature leaves of 6-week-old plants and during the course of shelf life. Consequently, xyloglucan endotransglucosylase (XET) enzyme activity and action were down-regulated in the cell walls of these leaves and it was established that leaf area and fresh weight were decreased while leaf strength was increased in the transgenic lines. Membrane permeability was reduced towards the end of shelf life in the transgenic lines relative to the controls and bacteria were evident inside the leaves of control plants only. Most importantly, an extended shelf-life of transgenic lines was observed relative to the non-transgenic control plants. These data illustrate the potential for engineering cell wall traits for improving quality and longevity of salad crops using either genetic modification directly, or by using markers associated with XTH genes to inform a commercial breeding programme.
Resumo:
Many techniques are currently used for motion estimation. In the block-based approaches the most common procedure applied is the block-matching based on various algorithms. To refine the motion estimates resulting from the full search or any coarse search algorithm, one can find few applications of Kalman filtering, mainly in the intraframe scheme. The Kalman filtering technique applicability for block-based motion estimation is rather limited due to discontinuities in the dynamic behaviour of the motion vectors. Therefore, we propose an application of the concept of the filtering by approximated densities (FAD). The FAD, originally introduced to alleviate limitations due to conventional Kalman modelling, is applied to interframe block-motion estimation. This application uses a simple form of FAD involving statistical characteristics of multi-modal distributions up to second order.
Resumo:
Within the context of active vision, scant attention has been paid to the execution of motion saccades—rapid re-adjustments of the direction of gaze to attend to moving objects. In this paper we first develop a methodology for, and give real-time demonstrations of, the use of motion detection and segmentation processes to initiate capture saccades towards a moving object. The saccade is driven by both position and velocity of the moving target under the assumption of constant target velocity, using prediction to overcome the delay introduced by visual processing. We next demonstrate the use of a first order approximation to the segmented motion field to compute bounds on the time-to-contact in the presence of looming motion. If the bound falls below a safe limit, a panic saccade is fired, moving the camera away from the approaching object. We then describe the use of image motion to realize smooth pursuit, tracking using velocity information alone, where the camera is moved so as to null a single constant image motion fitted within a central image region. Finally, we glue together capture saccades with smooth pursuit, thus effecting changes in both what is being attended to and how it is being attended to. To couple the different visual activities of waiting, saccading, pursuing and panicking, we use a finite state machine which provides inherent robustness outside of visual processing and provides a means of making repeated exploration. We demonstrate in repeated trials that the transition from saccadic motion to tracking is more likely to succeed using position and velocity control, than when using position alone.