949 resultados para CETP transgenic mice


Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Once metastasis has occurred, the possibility of completely curing breast cancer is unlikely, particularly for the 30 to 40% of cancers overexpressing the gene for HER2/neu. A vaccine targeting p185, the protein product of the HER2/neu gene, could have therapeutic application by controlling the growth and metastasis of highly aggressive HER2/neu+ cells. The purpose of this study was to determine the effectiveness of two gene vaccines targeting HER2/neu in preventive and therapeutic tumor models. METHODS: The mouse breast cancer cell line A2L2, which expresses the gene for rat HER2/neu and hence p185, was injected into the mammary fat pad of mice as a model of solid tumor growth or was injected intravenously as a model of lung metastasis. SINCP-neu, a plasmid containing Sindbis virus genes and the gene for rat HER2/neu, and Adeno-neu, an E1,E2a-deleted adenovirus also containing the gene for rat HER2/neu, were tested as preventive and therapeutic vaccines. RESULTS: Vaccination with SINCP-neu or Adeno-neu before tumor challenge with A2L2 cells significantly inhibited the growth of the cells injected into the mammary fat or intravenously. Vaccination 2 days after tumor challenge with either vaccine was ineffective in both tumor models. However, therapeutic vaccination in a prime-boost protocol with SINCP-neu followed by Adeno-neu significantly prolonged the overall survival rate of mice injected intravenously with the tumor cells. Naive mice vaccinated using the same prime-boost protocol demonstrated a strong serum immunoglobulin G response and p185-specific cellular immunity, as shown by the results of ELISPOT (enzyme-linked immunospot) analysis for IFNgamma. CONCLUSION: We report herein that vaccination of mice with a plasmid gene vaccine and an adenovirus gene vaccine, each containing the gene for HER2/neu, prevented growth of a HER2/neu-expressing breast cancer cell line injected into the mammary fat pad or intravenously. Sequential administration of the vaccines in a prime-boost protocol was therapeutically effective when tumor cells were injected intravenously before the vaccination. The vaccines induced high levels of both cellular and humoral immunity as determined by in vitro assessment. These findings indicate that clinical evaluation of these vaccines, particularly when used sequentially in a prime-boost protocol, is justified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To characterize cyan fluorescent protein (CFP) expression in the retina of the thy1-CFP (B6.Cg-Tg(Thy1-CFP)23Jrs/J) transgenic mouse line. METHODS: CFP expression was characterized using morphometric methods and immunohistochemistry with antibodies to neurofilament light (NF-L), neuronal nuclei (NeuN), POU-domain protein (Brn3a) and calretinin, which immunolabel ganglion cells, and syntaxin 1 (HPC-1), glutamate decarboxylase 67 (GAD(67)), GABA plasma membrane transporter-1 (GAT-1), and choline acetyltransferase (ChAT), which immunolabel amacrine cells. RESULTS: CFP was extensively expressed in the inner retina, primarily in the inner plexiform layer (IPL), ganglion cell layer (GCL), nerve fiber layer, and optic nerve. CFP fluorescent cell bodies were in all retinal regions and their processes ramified in all laminae of the IPL. Some small, weakly CFP fluorescent somata were in the inner nuclear layer (INL). CFP-containing somata in the GCL ranged from 6 to 20 microm in diameter, and they had a density of 2636+/-347 cells/mm2 at 1.5 mm from the optic nerve head. Immunohistochemical studies demonstrated colocalization of CFP with the ganglion cell markers NF-L, NeuN, Brn3a, and calretinin. Immunohistochemistry with antibodies to HPC-1, GAD(67), GAT-1, and ChAT indicated that the small, weakly fluorescent CFP cells in the INL and GCL were cholinergic amacrine cells. CONCLUSIONS: The total number and density of CFP-fluorescent cells in the GCL were within the range of previous estimates of the total number of ganglion cells in the C57BL/6J line. Together these findings suggest that most ganglion cells in the thy1-CFP mouse line 23 express CFP. In conclusion, the thy1-CFP mouse line is highly useful for studies requiring the identification of ganglion cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tenascin-C (TNC) is a multidomain extracellular matrix protein that contributes to organogenesis and tumorgenesis. To elucidate its developmental function in the context of TNC deficiency, lung lobes of TNC null mice were obtained at Embryonic Days E11.5 and E12.5 and cultured for 3 d. In lung explants of homozygote TNC-deficient embryos (E12.5) the number of future airway branches was reduced by 36% as compared with wild-type. In heterozygote explants only half of the reduction (18%) was observed. No significant alteration, neither of the explant growth nor of the pattern of airway branching, was noticed in TNC-null explants. However, the terminal endbuds of the transgenic explants were enlarged. The results are supported by a morphologic investigation at Postnatal Day P2, where the airspaces of TNC-deficient lungs appeared larger than in wild-type lungs. Taken together, our results represent the first developmental phenotype of TNC-null mice. We conclude that TNC takes part in the control of fetal lung branching, and that not only the presence of TNC but also its amount is important. Because TNC is predominantly expressed at the growing tip of the future airways, we hypothesize that TNC promotes the penetration into the surrounding mesenchyme and the branching of the growing airways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cellular form of the Prion protein (PrPC) is necessary for prion replication in mice. To determine whether it is also sufficient, we expressed PrP under the control of various cell- or tissue-specific regulatory elements in PrP knockout mice. The interferon regulatory factor-1 promoter/Eμ enhancer led to high PrP levels in the spleen and low PrP levels in the brain. Following i.p. scrapie inoculation, high prion titers were found in the spleen but not in the brain at 2 weeks and 6 months, showing that the lymphoreticular system by itself is competent to replicate prions. PrP expression directed by the Lck promoter resulted in high PrP levels on T lymphocytes only but, surprisingly, did not allow prion replication in the thymus, spleen, or brain following i.p. inoculation. A third transgenic line, which expressed PrP in the liver under the control of the albumin promoter/enhancer—albeit at low levels—also failed to replicate prions. These results show that expression of PrP alone is not sufficient to sustain prion replication and suggest that additional components are needed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conversion of the cellular prion protein (PrPC) into the pathogenic isoform (PrPSc) is the fundamental event underlying transmission and pathogenesis of prion diseases. To control the expression of PrPC in transgenic (Tg) mice, we used a tetracycline controlled transactivator (tTA) driven by the PrP gene control elements and a tTA-responsive promoter linked to a PrP gene [Gossen, M. and Bujard, H. (1992) Proc. Natl. Acad. Sci. USA 89, 5547–5551]. Adult Tg mice showed no deleterious effects upon repression of PrPC expression (>90%) by oral doxycycline, but the mice developed progressive ataxia at ≈50 days after inoculation with prions unless maintained on doxycycline. Although Tg mice on doxycycline accumulated low levels of PrPSc, they showed no neurologic dysfunction, indicating that low levels of PrPSc can be tolerated. Use of the tTA system to control PrP expression allowed production of Tg mice with high levels of PrP that otherwise cause many embryonic and neonatal deaths. Measurement of PrPSc clearance in Tg mice should be possible, facilitating the development of pharmacotherapeutics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the efficacy of a hairpin ribozyme targeting the 5′ leader sequence of HIV-1 RNA in a transgenic model system. Primary spleen cells derived from transgenic or control mice were infected with HIV-1/MuLV pseudotype virus. A significantly reduced susceptibility to infection in ribozyme-expressing transgenic spleen cells (P = 0.01) was shown. Variation of transgene-expression levels between littermates revealed a dose response between ribozyme expression and viral resistance, with an estimated cut off value below 0.2 copies of hairpin ribozyme per cell. These findings open up possibilities for studies on ribozyme efficacy and anti-HIV-1 gene therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The brain vesicular monoamine transporter (VMAT2) pumps monoamine neurotransmitters and Parkinsonism-inducing dopamine neurotoxins such as 1-methyl-4-phenyl-phenypyridinium (MPP+) from neuronal cytoplasm into synaptic vesicles, from which amphetamines cause their release. Amphetamines and MPP+ each also act at nonvesicular sites, providing current uncertainties about the contributions of vesicular actions to their in vivo effects. To assess vesicular contributions to amphetamine-induced locomotion, amphetamine-induced reward, and sequestration and resistance to dopaminergic neurotoxins, we have constructed transgenic VMAT2 knockout mice. Heterozygous VMAT2 knockouts are viable into adult life and display VMAT2 levels one-half that of wild-type values, accompanied by smaller changes in monoaminergic markers, heart rate, and blood pressure. Weight gain, fertility, habituation, passive avoidance, and locomotor activities are similar to wild-type littermates. In these heterozygotes, amphetamine produces enhanced locomotion but diminished behavioral reward, as measured by conditioned place preference. Administration of the MPP+ precursor N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine to heterozygotes produces more than twice the dopamine cell losses found in wild-type mice. These mice provide novel information about the contributions of synaptic vesicular actions of monoaminergic drugs and neurotoxins and suggest that intact synaptic vesicle function may contribute more to amphetamine-conditioned reward than to amphetamine-induced locomotion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antigen-specific effector T cells are prerequisite to immune protection, but because of the lack of effector cell-specific markers, their generation and differentiation has been difficult to study. We report that effector cells are highly enriched in a T cell subset that can be specifically identified in transgenic (T-GFP) mice expressing green fluorescent protein (GFP) under control of the murine CD4 promoter and proximal enhancer. Consistent with previous studies of these transcriptional control elements, GFP was strongly and specifically expressed in nearly all resting and short-term activated CD4+ and CD8+ T cells. However, when T-GFP mice were challenged with vaccinia virus, allogeneic tumor cells, or staphylococcal enterotoxin A, the cytotoxic and IFN-γ-producing T cells lost GFP expression. Upon T cell receptor (TCR) ligation by αCD3, sorted GFP+ cells fluxed calcium and proliferated vigorously. In contrast, GFP− effector cells showed a diminished calcium flux and did not proliferate. Instead, they underwent apoptosis unless supplied with exogenous IL-2. By reverse transcription–PCR analysis, the GFP− cells up-regulated the pro-apoptotic molecule, Fas-L, and down-regulated gene expression of the proximal TCR signaling molecule, CD3ζ, and c-jun, a component of the AP-1 transcription factor. Thus, differential regulation of TCR signaling may explain the divergent responses of naïve and effector T cells to antigen stimulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mature T cell receptor (TCR) repertoire is shaped by positive- and negative-selection events taking place during T cell development. These events are regulated by interactions between the TCR and major histocompatibility complex molecules presenting self-peptides. It has been shown that many antagonist peptides are efficient at mediating positive selection. In this study we analyzed the effects of a transgene encoding an antagonist peptide (influenza NP34) that is presented by H-2Db in a Tap-1-independent fashion in mice expressing the influenza NP68-specific TCR F5. We find that the transgenic peptide does not mediate positive or negative selection in F5+Tap-1−/− mice, but inhibits maturation of CD8+ single positive thymocytes in F5+Tap-1+ mice without inducing signs of negative selection. We conclude that antagonism of antigen recognition occurs not only at the level of mature T cells but also in T cell development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The importance of glucokinase (GK; EC 2.7.1.12) in glucose homeostasis has been demonstrated by the association of GK mutations with diabetes mellitus in humans and by alterations in glucose metabolism in transgenic and gene knockout mice. Liver GK activity in humans and rodents is allosterically inhibited by GK regulatory protein (GKRP). To further understand the role of GKRP in GK regulation, the mouse GKRP gene was inactivated. With the knockout of the GKRP gene, there was a parallel loss of GK protein and activity in mutant mouse liver. The loss was primarily because of posttranscriptional regulation of GK, indicating a positive regulatory role for GKRP in maintaining GK levels and activity. As in rat hepatocytes, both GK and GKRP were localized in the nuclei of mouse hepatocytes cultured in low-glucose-containing medium. In the presence of fructose or high concentrations of glucose, conditions known to relieve GK inhibition by GKRP in vitro, only GK was translocated into the cytoplasm. In the GKRP-mutant hepatocytes, GK was not found in the nucleus under any tested conditions. We propose that GKRP functions as an anchor to sequester and inhibit GK in the hepatocyte nucleus, where it is protected from degradation. This ensures that glucose phosphorylation is minimal when the liver is in the fasting, glucose-producing phase. This also enables the hepatocytes to rapidly mobilize GK into the cytoplasm to phosphorylate and store or metabolize glucose after the ingestion of dietary glucose. In GKRP-mutant mice, the disruption of this regulation and the subsequent decrease in GK activity leads to altered glucose metabolism and impaired glycemic control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fragile X syndrome arises from blocked expression of the fragile X mental retardation protein (FMRP). Golgi-impregnated mature cerebral cortex from fragile X patients exhibits long, thin, tortuous postsynaptic spines resembling spines observed during normal early neocortical development. Here we describe dendritic spines in Golgi-impregnated cerebral cortex of transgenic fragile X gene (Fmr1) knockout mice that lack expression of the protein. Dendritic spines on apical dendrites of layer V pyramidal cells in occipital cortex of fragile X knockout mice were longer than those in wild-type mice and were often thin and tortuous, paralleling the human syndrome and suggesting that FMRP expression is required for normal spine morphological development. Moreover, spine density along the apical dendrite was greater in the knockout mice, which may reflect impaired developmental organizational processes of synapse stabilization and elimination or pruning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production of subtle or conditional mutations in mice through the combined use of site-specific and homologous recombination has become an increasingly widespread experimental paradigm in mammalian genetics. Embryonic stem cells containing recombinase transgenes that were expressed in the male germ line, but not in other tissues or in the embryonic stem cells themselves, would substantially simplify the production of such alleles. Here we show that transgenes comprised of the mouse protamine 1 promoter and the Cre recombinase coding sequence mediate the efficient recombination of a Cre target transgene in the male germ line, but not in other tissues. Embryonic stem cell lines generated from one of these transgenic strains were transfected with targeting vectors that included loxP-flanked selectable markers, and homologously recombined alleles containing the marker and functional loxP sites were isolated. These results establish the potential of the system for substantially reducing the time, effort, and resources required to produce homologously recombined alleles in mice that have been secondarily rearranged by a site-specific recombinase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gene(s) encoded within major histocompatibility complex (MHC) act as one of the major genetic elements contributing to the susceptibility of murine systemic lupus erythematosus (SLE). We have recently demonstrated that lupus susceptibility is more closely linked to the I-E− H-2b haplotype than to the I-E+ H-2d haplotype in lupus-prone BXSB and (NZB × BXSB)F1 hybrid mice. To investigate whether the reduced susceptibility to SLE in H-2d mice is related to the expression of the MHC class II Ea gene (absent in H-2b mice), we determined the possible role of the Ea gene as a lupus protective gene in mice. Our results showed that (i) the development of SLE was almost completely prevented in BXSB (H-2b) mice expressing two copies of the Ead transgene at the homozygous level as well as in BXSB H-2k (I-E+) congenic mice as for H-2d BXSB mice, and (ii) the expression of two functional Ea (transgenic and endogenous) genes in either H-2d/b (NZB × BXSB)F1 or H-2k/b (MRL × BXSB)F1 mice provided protection from SLE at levels comparable to those conferred by the H-2d/d or H-2k/k haplotype. In addition, the level of the Ea gene-mediated protection appeared to be dependent on the genetic susceptibility to SLE in individual lupus-prone mice. Our results indicate that the reduced susceptibility associated with the I-E+ H-2d and H-2k haplotypes (versus the I-E− H-2b haplotype) is largely, if not all, contributed by the apparent autoimmune suppressive effect of the Ea gene, independently of the expression of the I-A or other MHC-linked genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cbl is the product of the protooncogene c-cbl and is involved in T cell antigen receptor (TCR)-mediated signaling. To understand the role of Cbl for immune system development and function, we generated a Cbl-deficient mouse strain. In Cbl-deficient mice, positive selection of the thymocytes expressing major histocompatibility complex class II-restricted transgenic TCR was significantly enhanced. Two factors may have contributed to the altered thymic selection. First, Cbl deficiency markedly up-regulated the activity of ZAP-70 and mitogen-activated protein kinases. The mitogen-activated protein kinase pathway was shown previously to be involved in thymic positive selection. Second, Cbl-deficient thymocytes expressed CD3 and CD4 molecules at higher levels, which consequently may increase the avidity of TCR/major histocompatibility complex/coreceptor interaction. Thus, Cbl plays a novel role in modulating TCR-mediated multiple signaling pathways and fine-tunes the signaling threshold for thymic selection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The endogenous opioid system has been implicated in sexual behavior, palatable intake, fear, and anxiety. The present study examined whether ovariectomized female transgenic preproenkephalin-knockout (PPEKO) mice and their wild-type and heterozygous controls displayed alterations in fear and anxiety paradigms, sucrose intake, and lordotic behavior. To examine stability of responding, three squads of the genotypes were tested across seasons over a 20-month period. In a fear-conditioning paradigm, PPEKO mice significantly increased freezing to both fear and fear + shock stimuli relative to controls. In the open field, PPEKO mice spent significantly less time and traversed significantly less distance in the center of an open field than wild-type controls. Further, PPEKO mice spent significantly less time and tended to be less active on the light side of a dark–light chamber than controls, indicating that deletion of the enkephalin gene resulted in exaggerated responses to fear or anxiety-provoking environments. These selective deficits were observed consistently across testing squads spanning 20 months and different seasons. In contrast, PPEKO mice failed to differ from corresponding controls in sucrose, chow, or water intake across a range (0.0001–20%) of sucrose concentrations and failed to differ in either lordotic or female approach to male behaviors when primed with estradiol and progesterone, thereby arguing strongly for the selectivity of a fear and anxiety deficit which was not caused by generalized and nonspecific debilitation. These transgenic data strongly suggest that opioids, and particularly enkephalin gene products, are acting naturally to inhibit fear and anxiety.