905 resultados para CAVE
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Subterranean area with block stone walls and ceiling made of tree limbs. Caption; "Reinforced Japanese cave."
Resumo:
Artillery shells and ladder in a cave. Caption; "Caves were numerous."
Resumo:
Six Marines with rifles at ready, covering a comrade using a flame thrower on a cave. Caption; "Riflemen covering flame thrower as he 'FRIES' them out"
Resumo:
The exterior of a fortified cave. Caption; "Many caves like this - made the going very slow."
Resumo:
Greek and English on opposite pages.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
1. The often complex architecture of coral reefs forms a diversity of light microhabitats. Analogous to patterns in forest plants, light variation may drive strategies for efficient light utilization and metabolism in corals. 2. We investigated the spatial distribution of light regimes in a spur-and-groove reef environment and examine the photophysiology of the coral Montipora monasteriata (Forskal 1775), a species with a wide habitat distribution. Specifically, we examined the variation in tissue and skeletal thickness, and photosynthetic and metabolic responses among contrasting light microhabitats. 3. Daily irradiances reaching corals in caves and under overhangs were 1-5 and 30-40% of those in open habitats at similar depth (3-5 m), respectively. Daily rates of net photosynthesis of corals in cave habitats approximated zero, suggesting more than two orders of magnitude variation in scope for growth across habitats. 4. Three mechanisms of photoadaptation or acclimation were observed in cave and overhang habitats: (1) a 20-50% thinner tissue layer and 40-60% thinner skeletal plates, maximizing light interception per unit mass; (2) a two- to threefold higher photosynthetic efficiency per unit biomass; and (3) low rates of dark respiration. 5. Specimens from open and cave habitats displayed a high capacity to acclimate to downshifts or upshifts in irradiance, respectively. However, specimens in caves displayed limited acclimation to further irradiance reduction, indicating that these live near their irradiance limit. 6. Analogous to patterns for some plant species in forest gaps, the morphological plasticity and physiological flexibility of M. monasteriata enable it to occupy light habitats that vary by more than two orders of magnitude.
Resumo:
Histoplasmosis is a rare but serious fungal infection commonly presenting as mucosal ulceration of the oral cavity. It is increasingly recognized in Australia but the source of infection remains obscure and it is likely to be under-diagnosed. We report a case of chronic mucosal ulceration which failed to fully respond to periodontal therapy. Histology and culture of a gingival biopsy was consistent with histoplasmosis, and the patient responded favourably to treatment with oral itraconazole. Histoplasmosis may present to general dental practitioners as chronic mucosal ulceration and should be considered in the differential diagnosis of such lesions. Diagnosis is best made by culture and histology of biopsy specimens.
Resumo:
Excavations at Liang Bua, a large limestone cave on the island of Flores in eastern Indonesia, have yielded evidence for a population of tiny hominins, sufficiently distinct anatomically to be assigned to a new species, Homo floresiensis(1). The finds comprise the cranial and some post-cranial remains of one individual, as well as a premolar from another individual in older deposits. Here we describe their context, implications and the remaining archaeological uncertainties. Dating by radiocarbon (C-14), luminescence, uranium-series and electron spin resonance (ESR) methods indicates that H. floresiensis existed from before 38,000 years ago (kyr) until at least 18 kyr. Associated deposits contain stone artefacts and animal remains, including Komodo dragon and an endemic, dwarfed species of Stegodon. H. floresiensis originated from an early dispersal of Homo erectus ( including specimens referred to as Homo ergaster and Homo georgicus)(1) that reached Flores, and then survived on this island refuge until relatively recently. It overlapped significantly in time with Homo sapiens in the region(2,3), but we do not know if or how the two species interacted.