950 resultados para CATIONIC AMPHIPHILE
Resumo:
Mesoporous Ni(OH)(2) was synthesized using cationic surfactant as template and urea as hydrolysis-controlling agent. Mesoporous NiO with centralized pore size distribution was obtained by calcining Ni(OH)(2) at different temperatures. The BET specific surface area reaches 477.7 m(2).g(-1) for NiO calcined at 523 K. Structure characterizations indicate the polycrystalline pore wall of mesoporous nickel oxide. The pore-formation mechanism is also deduced to be quasi-reverse micelle mechanism. Cyclic voltammetry shows the good capacitive behavior of these NiO samples due to its unique mesoporous structure when using large amount of NiO to fabricate electrode. Compared with NiO prepared by dip-coating and cathodic precipitation methods, this mesoporous NiO with controlled pore structure can be used in much larger amount to fabricate the electrode and still maintains high specific capacitance and good capacitive behavior.
Resumo:
RNA interference (RNAi) is the latest new technology in the field of genetic medicine in which specific genes can be turned off, or silenced, so as to affect a therapeutic outcome. It can be highly specific, works in the nanomolar range and is far more effective than the antisense approaches popular 10-15 years ago. Here we review the field and explore the potential role of RNAi in cancer therapy, highlighting recent progress and examining the hurdles that must be overcome before this promising technology is ready for clinical use. (C) 2006 Prous Science. All rights reserved.
Resumo:
Cellular delivery involving the transfer of various drugs and bio-active molecules (peptides, proteins and DNAs, etc.) through the cell membrane into cells has attracted increasing attention because of its importance in medicine and drug delivery. This topic has been extensively reviewed. The direct delivery of drugs and biomolecules, however, is generally inefficient and suffering from problems such as enzymic degradation of DNAs. Therefore, searching for efficient and safe transport vehicles (carriers) to delivery genes or drugs into cells has been challenging yet exciting area of research. In past decades, many carriers have been developed and investigated extensively which can be generally classified into four major groups: viral carriers, organic cationic compounds, recombinant protiens and inorganic nanoparticles. Many inorganic materials, such as calcium phosphate, gold, carbon materials, silicon oxide, iron oxide and layered double hydroxide (LDH), have been studied. Inorganic nanoparticles show low toxicity and promise for controlled delivery properties, thus presenting a new alternative to viral carriers and cationic carriers. Inorganic nanoparticles generally possess versatile properties suitable for cellular delivery, including wide availability, rich functionality, good biocompatibility, potential capability of targeted delivery (e.g. selectively destroying cancer cells but sparing normal tissues) and controlled release of carried drugs. This paper reviews the latest advances in inorganic nanoparticle applications as cellular delivery carriers and highlights some key issues in efficient cellular delivery using inorganic nanoparticles. Critical proper-ties of inorganic nanoparticles, surface functionalisation (modification), uptake of biomolecules, the driving forces for delivery, and release of biomolecules will be reviewed systematically. Selected examples of promising inorganic nanoparticle delivery systems, including gold, fullerences and carbon nanotubes, LDH and various oxide nanoparticles in particular their applications for gene delivery will be discussed. The fundamental understanding of properties of inorganic nanoparticles in relation to cellular delivery efficiency as the most paramount issue will be highlighted. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Biodegradable poly(dl-lactide-co-glycolide) microspheres were prepared using a modified double emulsion solvent evaporation method for the delivery of the subunit tuberculosis vaccine (Ag85B-ESAT-6), a fusion protein of the immunodominant antigens 6-kDa early secretory antigenic target (ESAT-6) and antigen 85B (Ag85B). Addition of the cationic lipid dimethyl dioctadecylammonium bromide (DDA) and the immunostimulatory trehalose 6,6'-dibehenate (TDB), either separately or in combination, was investigated for the effect on particle size and distribution, antigen entrapment efficiency, in vitro release profiles and in vivo performance. Optimised formulation parameters yielded microspheres within the desired sub-10 mu m range (1.50 +/- 0.13 mu m), whilst exhibiting a high antigen entrapment efficiency (95 +/- 1.2%) and prolonged release profiles. Although the microsphere formulations induced a cell-mediated immune response and raised specific antibodies after immunisation, this was inferior to the levels achieved with liposomes composed of the same adjuvants (DDA-TDB), demonstrating that liposomes are more effective vaccine delivery systems compared with microspheres.
Resumo:
Trehalose is a well known protector of biostructures like liposomes and proteins during freeze-drying, but still today there is a big debate regarding its mechanism of action. In previous experiments we have shown that trehalose is able to protect a non-phospholipid-based liposomal adjuvant (designated CAF01) composed of the cationic dimethyldioctadecylammonium (DDA) and trehalose 6,6-dibehenate (TDB) during freeze-drying [D. Christensen, C. Foged, I. Rosenkrands, H.M. Nielsen, P. Andersen, E.M. Agger, Trehalose preserves DDA/TDB liposomes and their adjuvant effect during freeze-drying, Biochim. Biophys. Acta, Biomembr. 1768 (2007) 2120-2129]. Furthermore it was seen that TDB is required for the stabilizing effect of trehalose. Herein, we show using the Langmuir-Blodgett technique that a high concentration of TDB present at the water-lipid interface results in a surface pressure around 67 mN/m as compared to that of pure DDA which is approximately 47 mN/m in the compressed state. This indicates that the attractive forces between the trehalose head group of TDB and water are greater than those between the quaternary ammonium head group of DDA and water. Furthermore, addition of trehalose to a DDA monolayer containing small amounts of TDB also increases the surface pressure, which is not observed in the absence of TDB. This suggests that even small amounts of trehalose groups on TDB present at the water-lipid interface associate free trehalose to the liposome surface, presumably by hydrogen bonding between the trehalose head groups of TDB and the free trehalose molecules. Hence, for CAF01 the TDB component not only stabilizes the cationic liposomes and enhances the immune response but also facilitates the cryo-/lyoprotection by trehalose through direct interaction with the head group of TDB. Furthermore the results indicate that direct interaction with liposome surfaces is necessary for trehalose to enable protection during freeze-drying.
Resumo:
Zwitterionic copolymers were synthesised from N,N-dimethyl-N-(2- acryloylethyl)-N-(3-sulfopropyl) ammonium betaine (SPDA) and 2-hydroxyethyl methacrylate (HEMA) produce a series of polyzwitterion hydrogels. For the synthesis of the charge-balanced copolymer hydrogels, two cationic monomers were selected: 2-(diethylamino) ethyl methacrylate (DMAEMA) and 3-(dimethylamino) propyl methacrylamide (DMAPMA), and an anionic monomer; 2-acrylamido-2- methylpropane sulphonic acid (AMPS). Two series of charge-balanced copolymers were synthesized from stoichiometrically equivalent ratios of DMAEMA or DMAPMA and AMPS with HEMA as a termonomer. All synthesized copolymers produced clear and cohesive hydrogels. The zwitterionic and charge-balanced copolymers displayed similar equilibrium water contents together with similar mechanical and surface energy properties. The swelling of the zwitterionic and the charge-balanced copolymers shows some features of antipolyelectrolyte behavior.
Resumo:
The mechanism behind the immunostimulatory effect obtained with the cationic liposomal vaccine adjuvant DDA:TDB remains unclear. One of the proposed hypotheses is the 'depot effect' in which the liposomal carrier helps to retain the antigen at the injection site thereby increasing the time of vaccine exposure to the immune cells. In the present study we devise a method to quantify the in vivo movement of liposomes and vaccine antigen using the radioisotopes H(3) and I(125) respectively. H(3)-labeled liposomes composed of dimethyldioctadecylammonium bromide (DDA) or an 8:1 molar ratio of DDA and trehalose 6,6-dibehenate (TDB) were administered in combination with I(125)-labeled Ag85B-ESAT-6 antigen, both via intramuscular and subcutaneous injection to mice. Furthermore characterisation of the liposomal system in simulated in vivo conditions was undertaken. Our results show that this dual-labeling technique is functional and reproducible. The administration of Ag85B-ESAT-6 without a liposomal carrier leads to rapid dissemination of the antigen from the site of injection. The administration of Ag85B-ESAT-6 together with either DDA or DDA:TDB liposomes however leads to deposition of the antigen at the injection site with detectable levels still being present 14 days post injection. Neither the incorporation of TDB nor the route of injection had any significant influence on the depot effect of DDA-based liposomes. The presence of TDB in DDA liposomes improves draining of liposomes to the lymph node in addition to increasing monocyte influx to the site of injection as highlighted by the intensive blue colouring of the injection site after pontamine blue staining of phagocytic cells in vivo. Our findings provide conclusive evidence for a cationic liposome-mediated deposition of antigen at the injection site with improved monocyte infiltration.
Resumo:
The formulation of plasmid DNA (pDNA) in cationic liposomes is a promising strategy to improve the potency of DNA vaccines. In this respect, physicochemical parameters such as liposome size may be important for their efficacy. The aim of the current study was to investigate the effect of vesicle size on the in vivo performance of liposomal pDNA vaccines after subcutaneous vaccination in mice. The tissue distribution of cationic liposomes of two sizes, 500 nm (PDI 0.6) and 140 nm (PDI 0.15), composed of egg PC, DOPE and DOTAP, with encapsulated OVA-encoding pDNA, was studied by using dual radiolabeled pDNA-liposomes. Their potency to elicit cellular and humoral immune responses was investigated upon application in a homologous and heterologous vaccination schedule with 3 week intervals. It was shown that encapsulation of pDNA into cationic lipsomes resulted in deposition at the site of injection, and strongest retention was observed at large vesicle size. The vaccination studies demonstrated a more robust induction of OVA-specific, functional CD8+ T-cells and higher antibody levels upon vaccination with small monodisperse pDNA-liposomes, as compared to large heterodisperse liposomes or naked pDNA. The introduction of a PEG-coating on the small cationic liposomes resulted in enhanced lymphatic drainage, but immune responses were not improved when compared to non-PEGylated liposomes. In conclusion, it was shown that the physicochemical properties of the liposomes are of crucial importance for their performance as pDNA vaccine carrier, and cationic charge and small size are favorable properties for subcutaneous DNA vaccination.
Resumo:
The aim of these studies was to compare the effect of liposome composition on physico-chemical characteristics and transfection efficacy of cationic liposomes both in vitro and in vivo. Comparison between 4 popularly used cationic lipids, showed 3b-N-(dimethylaminoethyl)carbamate (DC-Chol) to promote the highest transfect levels in cells in vitro with levels being at least 6 times higher than those of 1,2-di-O-octadecenyl-3-trimethylammonium propane (DOTMA). 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), and dimethyldioctadecylammonium (DDA) and approximately twice as efficient as dipalmitoyl-trimethylammonium-propane (DPTAP). To establish the role of the helper lipid, DC-Chol liposomes were formulated in combination with either 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) or cholesterol (Chol) (1:1 molar ratio) with and without the addition of phosphatidyl choline. The choice of helper lipid incorporated within the bilayer was found to influence the formation of complexes, their resultant structure and their transfection efficiency in vitro, with SUV-DNA complexes containing optimum levels of DOPE giving higher transfection than those containing cholesterol. The inclusion of PC within the formulation also reduced transfection efficiency in vitro. However, when administered in vivo, SUV-DNA complexes composed of PC:Chol:DC-Chol at a molar ratio of 16:8:4 micromole/ml were the most effective at inducing splenocyte proliferation upon exposure to antigen in comparison to control spleens. These results demonstrate that there is no in vitro/in vivo correlation between the transfection efficacy of these liposome formulations and in vitro transfection in the above cell model cannot be taken as a reliable indicator for in vivo efficacy of DNA vaccines.
Resumo:
The adjuvant efficacy of cationic liposomes composed of dimethyldioctadecylammonium bromide and trehalose dibehenate (DDA:TDB) is well established. Whilst the mechanism behind its immunostimulatory action is not fully understood, the ability of the formulation to promote a 'depot effect' is a consideration. The depot effect has been suggested to be primarily due to their cationic nature which results in electrostatic adsorption of the antigen and aggregation of the vesicles at the site of injection. The aim of the study was to further test this hypothesis by investigating whether sterically stabilising DDA:TDB with polyethylene glycol (PEG) reduces aggregation, and subsequently influences the formation of a depot at the site of injection. Results reported demonstrate that high (25%) levels of PEG was able to significantly inhibit the formation of a liposome depot and also severely limit the retention of antigen at the site, resulting in a faster drainage of the liposomes from the site of injection. This change in biodistribution profile was reflected in the immunisation response, where lower levels of IgG2b antibody and IFN-? and higher level of IL-5 cytokine were found. Furthermore entrapping antigen within DDA:TDB liposomes did not improve antigen retention at the injection site compared surface adsorbed antigen. © 2011 Elsevier B.V. All rights reserved.
Resumo:
Vaccination remains a key tool in the protection and eradication of diseases. However, the development of new safe and effective vaccines is not easy. Various live organism based vaccines currently licensed, exhibit high efficacy; however, this benefit is associated with risk, due to the adverse reactions found with these vaccines. Therefore, in the development of vaccines, the associated risk-benefit issues need to be addressed. Sub-unit proteins offer a much safer alternative; however, their efficacy is low. The use of adjuvanted systems have proven to enhance the immunogenicity of these sub-unit vaccines through protection (i.e. preventing degradation of the antigen in vivo) and enhanced targeting of these antigens to professional antigen-presenting cells. Understanding of the immunological implications of the related disease will enable validation for the design and development of potential adjuvant systems. Novel adjuvant research involves the combination of both pharmaceutical analysis accompanied by detailed immunological investigations, whereby, pharmaceutically designed adjuvants are driven by an increased understanding of mechanisms of adjuvant activity, largely facilitated by description of highly specific innate immune recognition of components usually associated with the presence of invading bacteria or virus. The majority of pharmaceutical based adjuvants currently being investigated are particulate based delivery systems, such as liposome formulations. As an adjuvant, liposomes have been shown to enhance immunity against the associated disease particularly when a cationic lipid is used within the formulation. In addition, the inclusion of components such as immunomodulators, further enhance immunity. Within this review, the use and application of effective adjuvants is investigated, with particular emphasis on liposomal-based systems. The mechanisms of adjuvant activity, analysis of complex immunological characteristics and formulation and delivery of these vaccines are considered.
Resumo:
Liposomes have been imaged using a plethora of techniques. However, few of these methods offer the ability to study these systems in their natural hydrated state without the requirement of drying, staining, and fixation of the vesicles. However, the ability to image a liposome in its hydrated state is the ideal scenario for visualization of these dynamic lipid structures and environmental scanning electron microscopy (ESEM), with its ability to image wet systems without prior sample preparation, offers potential advantages to the above methods. In our studies, we have used ESEM to not only investigate the morphology of liposomes and niosomes but also to dynamically follow the changes in structure of lipid films and liposome suspensions as water condenses on to or evaporates from the sample. In particular, changes in liposome morphology were studied using ESEM in real time to investigate the resistance of liposomes to coalescence during dehydration thereby providing an alternative assay of liposome formulation and stability. Based on this protocol, we have also studied niosome-based systems and cationic liposome/DNA complexes. Copyright © Informa Healthcare.
Resumo:
Compared to naked DNA immunisation, entrapment of plasmid-based DNA vaccines into liposomes by the dehydration-rehydration method has shown to enhance both humoural and cell-mediated immune responses to encoded antigens administered by a variety of routes. In this paper, we have investigated the application of liposome-entrapped DNA and their cationic lipid composition on such potency after subcutaneous immunisation. Plasmid pI.18Sfi/NP containing the nucleoprotein (NP) gene of A/Sichuan/2/87 (H3N2) influenza virus in the pI.18 expression vector was incorporated by the dehydration-rehydration method into liposomes composed of 16 μmol egg phosphatidylcholine (PC), 8 μmoles dioleoyl phosphatidylethanolamine (DOPE) or cholesterol (Chol) and either the cationic lipid 1,2-diodeoyl-3-(trimethylammonium) propane (DOTAP) or cholesteryl 3-N-(dimethyl amino ethyl) carbamate (DC-Chol). This method, entailing mixing of small unilamellar vesicles (SUV) with DNA, followed by dehydration and rehydration, yielded incorporation values of 90-94% of the DNA used. Mixing or rehydration of preformed cationic liposomes with 100 μg plasmid DNA also led to similarly high complexation values (92-94%). In an attempt to establish differences in the nature of DNA association with these various liposome preparations their physico-chemical characteristics were investigated. Studies on vesicle size, zeta potential and gel electrophoresis in the presence of the anion sodium dodecyl sulphate (SDS) indicate that, under the conditions employed, formulation of liposomal DNA by the dehydration-rehydration generated submicron size liposomes incorporating most of the DNA in a manner that prevents DNA displacement through anion competition. The bilayer composition of these dehydration-rehydration vesicles (DRV(DNA)) can also further influence these physicochemical characteristics with the presence of DOPE within the liposome bilayer resulting in a reduced vesicle zeta potential. Subcutaneous liposome-mediated DNA immunisation employing two DRV(DNA) formulations as well as naked DNA revealed that humoural responses (immunoglobulin total IgG, and subclasses IgG1 and 1gG2a) engendered by the plasmid encoded NP were substantially higher after dosing twice, 28 days apart with 10 μg liposome-entrapped DNA compared to naked DNA. At all time points measured, mice immunised with naked DNA showed no greater immune response compared to the control, non-immunised group. In contrast, as early as day 49, responses were significantly higher in mice injected with DNA entrapped in DRV liposomes containing DOTAP compared to the control group and mice immunised with naked DNA. By day 56, all total IgG responses from mice immunised with both DRV formulations were significantly higher. Comparison between the DRV formulations revealed no significant difference in immune responses elicited except at day 114, where the humoural responses of the group injected with liposomal formulation containing DC-Chol dropped to significantly lower levels that those measured in mice which received the DOTAP formulation. Similar results were found when the IgG1 and IgG2a subclass responses were determined. These results suggest that, not only can DNA be effectively entrapped within liposomes using the DRV method but that such DRV liposomes containing DNA may be a useful system for subcutaneous delivery of DNA vaccines. © 2003 Taylor & Francis Ltd.
Resumo:
Dendritic cells (DCs) are able to present glycolipids to invariant natural killer T (iNKT) cells in vivo. Very few compounds have been found to stimulate iNKT cells, and of these, the best characterised is the glycolipid a-galactosylceramide, which stimulates the production of large quantities of interferon-gamma (IFN-?) and interleukin-4 (IL-4). However, aGalCer leads to overstimulation of iNKT cells. It has been demonstrated that the aGalCer analogue, threitol ceramide (ThrCer 2), successfully activates iNKT cells and overcomes the problematic iNKT cell activation-induced anergy. In this study, ThrCer 2 has been inserted into the bilayers of liposomes composed of a neutral lipid, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), or dimethyldioctadecylammonium bromide (DDA), a cationic lipid. Incorporation efficiencies of ThrCer within the liposomes was 96% for DSPC liposomes and 80% for DDA liposomes, with the vesicle size (large multilamellar vs. small unilamellar vesicles) making no significant difference. Langmuir-Blodgett studies suggest that both DSPC and DDA stack within the monolayer co-operatively with the ThrCer molecules with no condensing effect. In terms of cellular responses, IFN-? secretion was higher for cells treated with small DDA liposomes compared with the other liposome formulations, suggesting that ThrCer encapsulation in this liposome formulation resulted in a higher uptake by DCs.
Resumo:
Liposome systems are well reported for their activity as vaccine adjuvants; however novel lipid-based microbubbles have also been reported to enhance the targeting of antigens into dendritic cells (DCs) in cancer immunotherapy (Suzuki et al 2009). This research initially focused on the formulation of gas-filled lipid coated microbubbles and their potential activation of macrophages using in vitro models. Further studies in the thesis concentrated on aqueous-filled liposomes as vaccine delivery systems. Initial work involved formulating and characterising four different methods of producing lipid-coated microbubbles (sometimes referred to as gas-filled liposomes), by homogenisation, sonication, a gas-releasing chemical reaction and agitation/pressurisation in terms of stability and physico-chemical characteristics. Two of the preparations were tested as pressure probes in MRI studies. The first preparation composed of a standard phospholipid (DSPC) filled with air or nitrogen (N2), whilst in the second method the microbubbles were composed of a fluorinated phospholipid (F-GPC) filled with a fluorocarbon saturated gas. The studies showed that whilst maintaining high sensitivity, a novel contrast agent which allows stable MRI measurements of fluid pressure over time, could be produced using lipid-coated microbubbles. The F-GPC microbubbles were found to withstand pressures up to 2.6 bar with minimal damage as opposed to the DSPC microbubbles, which were damaged at above 1.3 bar. However, it was also found that DSPC-filled with N2 microbubbles were also extremely robust to pressure and their performance was similar to that of F-GPC based microbubbles. Following on from the MRI studies, the DSPC-air and N2 filled lipid-based microbubbles were assessed for their potential activation of macrophages using in vitro models and compared to equivalent aqueous-filled liposomes. The microbubble formulations did not stimulate macrophage uptake, so studies thereafter focused on aqueous-filled liposomes. Further studies concentrated on formulating and characterising, both physico-chemically and immunologically, cationic liposomes based on the potent adjuvant dimethyldioctadecylammonium (DDA) and immunomodulatory trehalose dibehenate (TDB) with the addition of polyethylene glycol (PEG). One of the proposed hypotheses for the mechanism behind the immunostimulatory effect obtained with DDA:TDB is the ‘depot effect’ in which the liposomal carrier helps to retain the antigen at the injection site thereby increasing the time of vaccine exposure to the immune cells. The depot effect has been suggested to be primarily due to their cationic nature. Results reported within this thesis demonstrate that higher levels of PEG i.e. 25 % were able to significantly inhibit the formation of a liposome depot at the injection site and also severely limit the retention of antigen at the site. This therefore resulted in a faster drainage of the liposomes from the site of injection. The versatility of cationic liposomes based on DDA:TDB in combination with different immunostimulatory ligands including, polyinosinic-polycytidylic acid (poly (I:C), TLR 3 ligand), and CpG (TLR 9 ligand) either entrapped within the vesicles or adsorbed onto the liposome surface was investigated for immunogenic capacity as vaccine adjuvants. Small unilamellar (SUV) DDA:TDB vesicles (20-100 nm native size) with protein antigen adsorbed to the vesicle surface were the most potent in inducing both T cell (7-fold increase) and antibody (up to 2 log increase) antigen specific responses. The addition of TLR agonists poly(I:C) and CpG to SUV liposomes had small or no effect on their adjuvanticity. Finally, threitol ceramide (ThrCer), a new mmunostimulatory agent, was incorporated into the bilayers of liposomes composed of DDA or DSPC to investigate the uptake of ThrCer, by dendritic cells (DCs), and presentation on CD1d molecules to invariant natural killer T cells. These systems were prepared both as multilamellar vesicles (MLV) and Small unilamellar (SUV). It was demonstrated that the IFN-g secretion was higher for DDA SUV liposome formulation (p<0.05), suggesting that ThrCer encapsulation in this liposome formulation resulted in a higher uptake by DCs.