978 resultados para CASCADE DECAYS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

beta-NaYF4 hexagonal microprisms and microrods with different aspect ratios have been prepared via a simple hydrothermal route. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectra as well as kinetic decays were used to characterize the samples. The influences of reaction temperature and the molar ratio of NaF to y(3+) on the crystal phases and shapes of final products have been studied in detail. The aspect ratios of products increase gradually with the increase of reaction temperature and NaF/Y3+ molar ratio. The growth mechanisms of crystals prepared under the different conditions are presented systematically. More importantly, the systematical investigation on the luminescence properties of beta-NaYF4:xEu(3+) (x = 0.5, 1, 2, 3, 5, and 10 mol %) with hexagonally microprismatic morphology shows the characteristic emissions of Eu3+ (D-5(J)-F-7(J'), J, J' = 0, 1, 2, 3). Under the excitation of single wavelength light of 397 nm, the luminescence colors of the corresponding products can be tuned feasibly from bluish white to yellow to red by changing the doping concentration of Eu3+.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gd2MoO6:Eu3+ nanofibers and nanobelts have been prepared by a combination method of the sol-gel process and electrospinning. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy, photoluminescence, and low voltage cathodoluminescence as well as kinetic decays were used to characterize the resulting samples. The results of XRD and FTIR indicate that the Gd2MoO6:Eu3+ samples have crystallized at 600 degrees C with the monoclinic (alpha) structure. The SEM and TEM results indicate that the as-formed precursor fibers and belts are uniform and that the as-prepared nanofibers and nanobelts consist of nanoparticles. Gd2MoO6:Eu3+ phosphors show their strong characteristic emission under UV excitation (353 nm) and low voltage electron-beam excitation (3 kV), making the materials have potential applications in fluorescent lamps and field-emission displays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

LaPO4:Ce3+, Tb3+ nanoparticles were prepared by the reverse microemulsion with functional monomer, methyl methacrylate (MMA) as oil phase, and LaPO4:Ce3+, Tb3+/poly(methyl methacrylate) (PMMA) nanocomposite was obtained via polymerization of MMA monomer. The nanoparticles and nanocomposite have been well characterized by XRD, SEM, TEM, UV/vis spectrum, photoluminescence excitation and emission spectra and luminescence decays. The obtained solid nanocomposite LaPO4:Ce3+, Tb3+/PMMA is highly transparent and exhibits strong green photoluminescence upon UV excitation, due to the integration of luminescent LaPO4:Ce3+, Tb3+ nanoparticles. The luminescent lifetime of Tb3+ is determined to be 1.25 ms in the nanocomposite. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rare-earth ions (Eu3+, Tb3+) doped AMoO(4) (A = Sr, Ba) particles with uniform morphologies were successfully prepared through a facile solvothermal process using ethylene glycol (EG) as protecting agent. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) spectra and the kinetic decays were performed to characterize these samples. The XRD results reveal that all the doped samples are of high purity and crystallinity and assigned to the tetragonal scheelite-type structure of the AMoO(4) phase. It has been shown that the as-synthesized SrMoO4:Ln and BaMoO4:Ln samples show respective uniform pea nut-like and oval morphologies with narrowsize distribution. The possible growth process of the AMoO(4):Ln has been investigated in detail. The EG/H2O volume ratio, reaction temperature and time have obvious effect on themorphologies and sizes of the as-synthesized products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ce3+ and/or Tb3+ doped LaPO4 nanofibers and microbelts have been prepared by a combination method of sol-gel process and electrospinning. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), low voltage cathodoluminescence (CL) and time-resolved emission spectra as well as kinetic decays were used to characterize the resulting samples. SEM and TEM results indicate the as-formed precursor fibers and belts are smooth. and the as-prepared nanofibers and microbelts consist of nanoparticles. The doped rare-earth ions show their characteristic emission under ultraviolet excitation, i.e. Ce3+ 5d-4f and Tb3+ D-5(4)-F-7(j) (J = 6-3) transitions, respectively. The energy transfer process from Ce3+ to Tb3+ in LaPO4:Ce3+, Tb3+ nanofibers was further studied by the time-resolved emission spectra.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monodisperse rare-earth ion (Eu3+, Ce3+, Tb3+) doped LaPO4 particles with oval morphology were successfully prepared through a facile solvothermal process without further hear treatment. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) spectra and the kinetic decays were performed to characterize these samples. The XRD results reveal that all the doped samples are well crystalline at 180 degrees C and assigned to the monoclinic monazite-type structure of the LaPO4 phase. It has been shown that all the as-synthesized samples show perfectly oval morphology with narrow size distribution. The possible growth mechanism of the LapO(4):Ln has been investigated as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uniform lanthanide orthophosphate LnPO(4) (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho) nanoparticles have been systematically synthesized via a facile, fast, efficient ultrasonic irradiation of inorganic salt aqueous solution under ambient conditions without any surfactant or template. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), photoluminescence (PL) spectra as well as kinetic decays were employed to characterize the samples. The SEM and the TEM images show that the hexagonal structured lanthanide orthophosphate LnPO(4) (Ln = La, Ce, Pr, Nd. Sm, Eu, Gd) products have nanorod bundles morphology, while the tetragonal LnPO(4) (Ln = Tb, Dy, Ho) samples prepared under the same experimental conditions are composed of nanoparticles. HRTEM micrographs and SAED results prove that these nanostructures are polycrystalline in nature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One-dimensional Mn2+-doped ZnGa2O4 nanofibers were prepared by a simple and cost-effective electrospinning process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), scanning electron microscopy (SEM), energy-dispersive X-ray spectrum (EDS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL) and cathodoluminescence (CL) spectra as well as kinetic decays were used to characterize the samples. SEM results indicated that the as-formed precursor fibers and those annealed at 700 degrees C are uniform with length of several tens to hundred micrometers, and the diameters of the fibers decrease greatly after being heated at 700 degrees C. Under ultraviolet excitation (246 nm) and low-voltage electron beams (1-3 kV) excitation, the ZnGa2O4:Mn2+ nanofibers presents the blue emission band of the ZnGa2O4 host lattice and the strong green emission with a peak at 505 nm corresponding to the T-4(1)-(6)A(1) transition of Mn2+ ion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One-dimensional (1D) Y2O3:Tb3+ and Gd2O3:Tb3+ microrods have been successfully prepared through a large-scale and facile hydrothermal method followed by a subsequent calcination process in N-2/H-2 mixed atmosphere. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (IR), thermogravimetric analysis (TGA), energy-dispersive X-ray spectra (EDX). scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), photoluminescence (PL) and cathodoluminescence (CL) spectra as well as kinetic decays were used to characterize the samples. The as-formed products via the hydrothermal process could transform to cubic Y2O3:Tb3+ and Gd2O3:Tb3+ with the same morphology and slight shrinking in size after a postannealing process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Europium doped hydroxyapatite (Eu:HAp) nanosized particles with multiform morphologies have been successfully prepared via a simple microemulsion-mediated process assisted with microwave heating. The physicochemical properties of the samples were well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) spectra, and the kinetic decays, respectively. The results reveal that the obtained Eu:HAp particles are well assigned to the hexagonal lattice structure of the hydroxyapatite phase. Additionally, it is found that samples exhibit uniform morphologies which can be controlled by altering the pH values. Furthermore, the samples show the characteristic D-5(0)-F-7(1-4) emission lines of Eu3+ excited by UV radiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three-dimensional flowerlike Lu2O3 and Lu2O3:Ln(3+) (Ln = Eu, Th, Dy, Pr, Sm, Er, Ho, Tm) microarchitectures have been successfully synthesized via ethylene glycol (EG)-mediated hydrothermal method followed by a subsequent heat treatment process. X-ray diffraction, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectra, thermogravimetric and differential thermal analysis, elemental analysis, inductively coupled plasma atomic absorption spectrometric analysis, ion chromatogram analysis, X-ray photoelectron spectra, scanning electron microscopy, transmission electron microscopy, photoluminescence spectra as well kinetic decays, and cathodoluminescence spectra were used to characterize the samples. Hydrothermal temperature, EG, and CH3COONa play critical roles in the formation of the lutetium oxide precursor microflowers. The reaction mechanism and the self-assembly evolution process have been proposed. The as-formed lutetium oxide precursor could transform to Lu2O3 With their original flowerlike morphology and slight shrinkage in the size after postannealing process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One-dimensional Mn2+-doped Zn2SiO4 rnicrobelts and microfibers were prepared by a simple and cost-effective electrospinning process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), scanning electron microscopy (SEM), energy-dispersive X-ray spectrum (EDS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), and cathodoluminescence (CL) spectra as well as kinetic decays were used to characterize the samples. The XRD and DTA results show that the Zn2SiO4 phase begins to crystallize at 800 degrees C and crystallizes completely around 1000 degrees C. SEM results indicate that the as-prepared microbelts/fibers are smooth, whose diameters decrease with increasing the annealing temperature. The average diameter of the Zn2SiO4:Mn2+ microfibers annealed at 1000 degrees C is 0.32 mu m, and their lengths reach up to several millimeters. The average width and thickness of the Zn2SiO4:Mn2+ microbelts fired at 1000 degrees C are around 0.48 and 0.24 mu m, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

LaF3. CeF3, CeF3:Tb3+, and CeF3:Tb3+ @LaF3 (core-shell) 2D nanoplates have been successfully synthesized by a facile and effective hydrothermal process. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectra as well as kinetic decays were used to characterize the samples. The experimental results indicate that the organic additive, trisodium citrate (Cit(3-)), as a shape modifier has the dynamic effect by adjusting the growth rate of different crystal facets, resulting in forming the anisotropic geometries of the final products. The possible formation mechanisms for different products have been presented. The CeF3, CeF3:Tb3+, and CeF3:Tb3+ @LaF3 (core/shell) nanoplates show characteristic emission of Ce3+ (5d-4f) and Tb3+ (f-f), respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nearly monodisperse and well-defined one-dimensional (1D) Gd2O3:Eu3+ nanorods and microrods were successfully prepared through a large-scale and facile hydrothermal method followed by a subsequent heat treatment process, without using any catalyst or template. X-ray diffraction (XRD), thermogravimetric analysis and differential scanning calorimetry (TGA-DSC), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), photoluminescence (PL) and cathodoluminescence (CL) spectra as well as kinetic decays were used to characterize the samples. The size of the Gd2O3:Eu3+ rods could be modulated from micro- to nanoscale with the increase of pH value using ammonia solution. The as-formed product via the hydrothermal process, Gd(OH)(3):Eu3+, could transform to cubic Gd2O3:Eu3+ with the same morphology and a slight shrinking in size after a postannealing process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We conjugated 2-(hexylthio)thiophene with bipyridine to construct a new heteroleptic polypyridyl ruthenium sensitizer exhibiting a charge-transfer band at 550 nm with a molar extinction coefficient of 18.7 x 10(3) M-1 cm(-1). In contrast to its analogues Z907 and C101, a mesoporous titania film stained with this new sensitizer featured a short light absorption length, allowing for the use of a thin photoactive layer for efficient light-harvesting and conversion of solar energy to electricity. With a preliminary testing, we have reached 11.4% overall power conversion efficiency measured at the air mass 1.5 global conditions. Transient photoelectrical decays and electrical impedance spectra were analyzed to picture the intrinsic physics of temperature-dependent photovoltage and photocurrent.