941 resultados para CARD Signaling Adaptor Proteins
Resumo:
Although there is some information on the total amounts of proteins in wastewater and sludges1"3 and on the amino acids in them,4-11 especially in activated sludge,12 there is almost no evidence on the nature of the proteins in these materials. A knowledge of the nature of proteins in wastewater, sludges, and similar substances would be useful not only for determining the pollutional effects on the environment and the changes in the protein structures during decomposition or treatment, but also for determining the possible usage of the resulting materials in agriculture,13 includ ing animal nutrition.
Resumo:
DNA helicases are present in all kingdoms of life and play crucial roles in processes of DNA metabolism such as replication, repair, recombination, and transcription. To date, however, the role of DNA helicases during homologous recombination in mycobacteria remains unknown. In this study, we show that Mycobacterium tuberculosis UvrD1 more efficiently inhibited the strand exchange promoted by its cognate RecA, compared to noncognate Mycobacterium smegmatis or Escherichia coli RecA proteins. The M. tuberculosis UvrD1(Q276R) mutant lacking the helicase and ATPase activities was able to block strand exchange promoted by mycobacterial RecA proteins but not of E. coil RecA. We observed that M. tuberculosis UvrA by itself has no discernible effect on strand exchange promoted by E. coli RecA but impedes the reaction catalyzed by the mycobacterial RecA proteins. Our data also show that M. tuberculosis UvrA and UvrD1 can act together to inhibit strand exchange promoted by mycobacterial RecA proteins. Taken together, these findings raise the possibility that UvrD1 and UvrA might act together in vivo to counter the deleterious effects of RecA nucleoprotein filaments and/or facilitate the dissolution of recombination intermediates. Finally, we provide direct experimental evidence for a physical interaction between M. tuberculosis UvrD1 and RecA on one hand and RecA and UvrA on the other hand. These observations are consistent with a molecular mechanism, whereby M. tuberculosis UvrA and UvrD1, acting together, block DNA strand exchange promoted by cognate and noncognate RecA proteins.
Resumo:
There was no difference in the incorporation of S-35 label into proteins of T4 and amber B17 phage grown on Escherichia coli B. The head protein peak was absent in the polyacrylamide gel electrophoretic profile of the S-35 labeled proteins of amber B17 grown on non-permissive host, E.coli B. However, an increase of 15–70% in the synthesis of other phage proteins of amber B17 over that of T4 phage was observed. The lysozyme activity increased by two fold in amber B17 in comparison with that of T4 phage grown on E.coli B. These results imply that in the absence of head protein synthesis by amber mutant there was an increase in the synthesis of other phage proteins.
Resumo:
A model is presented which explains the biological role of the leader peptide in protein export. Along the lines of this model, the conformational changes of a protein with environment serves as a general mechanism for translocation. The leader peptide in the cytoplasm takes a hairpin like conformation which reverts to an extended helix upon integration into the membrane. The essential features of this model are in accord with recent results of protein export.
Resumo:
BacilliformOryctes baculovirus particles have been visualized in electron micrographs of midgut sections from virus infectedOryctes rhinoceros beetles. Morphologically the Indian isolate (Oryctes baculovirus, KI) resembled the previously reportedOryctes baculovirus, isolate PV505. The constituent proteins of baculovirus KI have been analysed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and by Western blots using polyclonal antibodies raised against the complete viral particles, as probes. A total of forty eight viral proteins have been identified. Fourteen viral proteins were located on the viral envelope. Among the proteins constituting the nucleocapsid, three were located internally within the capsid. A 23.5 kDa protein was tightly associated with viral DNA in the nucleocapsid core. Two envelope and seven capsid proteins stained positive for glycosylation. Comparison between the viral proteins of KI and PV505 revealed differences in SDS-PAGE profiles and glycosylation patterns. Immunoblotting of KI and PV505 proteins with anti KI antiserum demonstrated antigenic differences between the two viral isolates.
Resumo:
DNA helicases are present in all kingdoms of life and play crucial roles in processes of DNA metabolism such as replication, repair, recombination, and transcription. To date, however, the role of DNA helicases during homologous recombination in mycobacteria remains unknown. In this study, we show that Mycobacterium tuberculosis UvrD1 more efficiently inhibited the strand exchange promoted by its cognate RecA, compared to noncognate Mycobacterium smegmatis or Escherichia coli RecA proteins. The M. tuberculosis UvrD1(Q276R) mutant lacking the helicase and ATPase activities was able to block strand exchange promoted by mycobacterial RecA proteins but not of E. coil RecA. We observed that M. tuberculosis UvrA by itself has no discernible effect on strand exchange promoted by E. coli RecA but impedes the reaction catalyzed by the mycobacterial RecA proteins. Our data also show that M. tuberculosis UvrA and UvrD1 can act together to inhibit strand exchange promoted by mycobacterial RecA proteins. Taken together, these findings raise the possibility that UvrD1 and UvrA might act together in vivo to counter the deleterious effects of RecA nucleoprotein filaments and/or facilitate the dissolution of recombination intermediates. Finally, we provide direct experimental evidence for a physical interaction between M. tuberculosis UvrD1 and RecA on one hand and RecA and UvrA on the other hand. These observations are consistent with a molecular mechanism, whereby M. tuberculosis UvrA and UvrD1, acting together, block DNA strand exchange promoted by cognate and noncognate RecA proteins.
Resumo:
The hydrophobic effect is widely believed to be an important determinant of protein stability. However, it is difficult to obtain unambiguous experimental estimates of the contribution of the hydrophobic driving force to the overall free energy of folding. Thermodynamic and structural studies of large to small substitutions in proteins are the most direct method of measuring this contribution. We have substituted the buried residue Phe8 in RNase S with alanine, methionine, and norleucine, Binding thermodynamics and structures were characterized by titration calorimetry and crystallography, respectively. The crystal structures of the RNase S F8A, F8M, and F8Nle mutants indicate that the protein tolerates the changes without any main chain adjustments, The correlation of structural and thermodynamic parameters associated with large to small substitutions was analyzed for nine mutants of RNase S as well as 32 additional cavity-containing mutants of T4 lysozyme, human lysozyme, and barnase. Such substitutions were typically found to result in negligible changes in Delta C-p and positive values of both Delta Delta H degrees and aas of folding. Enthalpic effects were dominant, and the sign of Delta Delta S is the opposite of that expected from the hydrophobic effect. Values of Delta Delta G degrees and Delta Delta H degrees correlated better with changes in packing parameters such as residue depth or occluded surface than with the change in accessible surface area upon folding. These results suggest that the loss of packing interactions rather than the hydrophobic effect is a dominant contributor to the observed energetics for large to small substitutions. Hence, estimates of the magnitude of the hydrophobic driving force derived from earlier mutational studies are likely to be significantly in excess of the actual value.
Resumo:
Formylation of the initiator tRNA is essential for normal growth of Escherichia coil, The initiator tRNA containing the U35A36 mutation (CUA anticodon) initiates from UAG codon, However, an additional mutation at position 72 (72A --> G) renders the tRNA (G72/U35A36) inactive in initiation because it is defective in formylation, In this study, we isolated U1G72/U35A36 tRNA containing a wobble base pair at 1-72 positions as an intragenic suppressor of the G72 mutation. The U1G72/U35A36 tRNA is formylated and participates in initiation. More importantly, we show that the mismatch at 1-72 positions of the initiator tRNA, which was thus far thought to be the hallmark of the resistance of this tRNA against peptidyl-tRNA hydrolase (PTH), is not sufficient, The amino acid attached to the initiator tRNA is also important in conferring protection against PTH. Further, we show that the relative levels of PTH and IF2 influence the path adopted by the initiator tRNAs in protein synthesis. These findings provide an important clue to understand the dual function of the single tRNA(Met) in initiation and elongation, in the mitochondria of various organisms.
Resumo:
The Mycobacterium tuberculosis transcriptional regulator Rv1364c regulates the activity of the stress response sigma factor sigma(F). This multi-domain protein has several components: a signaling PAS domain and an effector segment comprising of a phosphatase, a kinase and an anti-anti-sigma factor domain. Based on Small Angle X-ray Scattering (SAXS) data, Rv1364c was recently shown to be a homo-dimer and adopt an elongated conformation in solution. The PAS domain could not be modeled into the structural envelope due to poor sequence similarity with known PAS proteins. The crystal structure of the PAS domain described here provides a structural basis for the dimerization of Rv1364c. It thus appears likely that the PAS domain regulates the anti-sigma activity of Rv1364c by oligomerization. A structural comparison with other characterized PAS domains reveal several sequence and conformational features that could facilitate ligand binding - a feature which suggests that the function of Rv1364c could potentially be governed by specific cellular signals or metabolic cues. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Glycomics is the study of comprehensive structural elucidation and characterization of all glycoforms found in nature and their dynamic spatiotemporal changes that are associated with biological processes. Glycocalyx of mammalian cells actively participate in cell-cell, cell-matrix, and cell-pathogen interactions, which impact embryogenesis, growth and development, homeostasis, infection and immunity, signaling, malignancy, and metabolic disorders. Relative to genomics and proteomics, glycomics is just growing out of infancy with great potential in biomedicine for biomarker discovery, diagnosis, and treatment. However, the immense diversity and complexity of glycan structures and their multiple modes of interactions with proteins pose great challenges for development of analytical tools for delineating structure function relationships and understanding glycocode. Several tools are being developed for glycan profiling based on chromatography,m mass spectrometry, glycan microarrays, and glyco-informatics. Lectins, which have long been used in glyco-immunology, printed on a microarray provide a versatile platform for rapid high throughput analysis of glycoforms of biological samples. Herein, we summarize technological advances in lectin microarrays and critically review their impact on glycomics analysis. Challenges remain in terms of expansion to include nonplant derived lectins, standardization for routine clinical use, development of recombinant lectins, and exploration of plant kingdom for discovery of novel lectins.
Resumo:
Tumorigenesis is a consequence of inactivating mutations of tumor suppressor genes and activating mutations of proto-oncogenes. Most of the mutations compromise cell autonomous and non-autonomous restrains on cell proliferation by modulating kinase signal transduction pathways. LKB1 is a tumor suppressor kinase whose sporadic mutations are frequently found in non-small cell lung cancer and cervical cancer. Germ-line mutations in the LKB1 gene lead to Peutz-Jeghers syndrome with an increased risk of cancer and development of benign gastrointestinal hamartomatous polyps consisting of hyperproliferative epithelia and prominent stromal stalk composed of smooth muscle cell lineage cells. The tumor suppressive function of LKB1 is possibly mediated by 14 identified LKB1 substrate kinases, whose activation is dependent on the LKB1 kinase complex. The aim of my thesis was to identify cell signaling pathways crucial for tumor suppression by LKB1. Re-introduction of LKB1 expression in the melanoma cell line G361 induces cell cycle arrest. Here we demonstrated that restoring the cytoplasmic LKB1 was sufficient to induce the cell cycle arrest in a tumor suppressor p53 dependent manner. To address the role of LKB1 in gastrointestinal tumor suppression, Lkb1 was deleted specifically in SMC lineage in vivo, which was sufficient to cause Peutz-Jeghers syndrome type polyposis. Studies on primary myofibroblasts lacking Lkb1 suggest that the regulation of TGFβ signaling, actin stress fibers and smooth muscle cell lineage differentiation are candidate mechanisms for tumor suppression by LKB1 in the gastrointestinal stroma. Further studies with LKB1 substrate kinase NUAK2 in HeLa cells indicate that NUAK2 is part of a positive feedback loop by which NUAK2 expression promotes actin stress fiber formation and, reciprocally the induction of actin stress fibers promote NUAK2 expression. Findings in this thesis suggest that p53 and TGFβ signaling pathways are potential mediators of tumor suppression by LKB1. An indication of NUAK2 in the promotion of actin stress fibers suggests that NUAK2 is one possible mediator of LKB1 dependent TGFβ signaling and smooth muscle cell lineage differentiation.