908 resultados para CANCER CELLS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Résumé: Le neuroblastome (NB) est un néoplasme dévastateur de la petite enfance, pour lequel il n'existe pas encore de traitement efficace. Les chimiokines et leurs récepteurs ont été impliqués dans la croissance des tumeurs et la formation de métastases, et en particulier, il a été rapporté que l'axe CXCR4/CXCL12 dirigeait le guidage, ainsi que l'invasion des cellules cancéreuses vers des organes spécifiques. Notre étude avait pour objectif d'analyser le rôle de CxCR4 exogène dans le comportement malin du NB, en étudiant la croissance des cellules tumorales, leur capacité de survie, de migration et d'invasion in vitro et en validant ces résultats grâce à un modèle orthotopique murin de la progression tumorale du NB in vivo. La surexpression de CXCR4 dans les cellules faiblement métastatiques IGR-NB8 n'exprimant pas CXCR4, a augmenté la mobilité des cellules vers CXCL12 in vitro. De plus, les cellules surexprimant CXCR4 ont été moins affectées par la privation de sérum que les cellules contrôles. Le volume des tumeurs chez les animaux greffés de manière orthotopique avec les cellules NB8-CXCR4-C3 était significativement plus élevé que celui des tumeurs issues des cellules contrôles NB8-E6 au moment du sacrifice des animaux. Cependant, aucune induction des métastases n'a été observée. La lignée cellulaire IGR-N91, aux propriétés invasives et métastatiques in vivo, exprime constitutivement des quantités modérées de CXCR4. La surexpression du récepteur dans cette lignée a accéléré la croissance tumorale in vivo, mais n'a pas augmenté pas l'occurrence des métastases. Les cellules IGR-N91, dans lesquelles l'expression de CXCR4 a été éteinte, suite à l'introduction de shRNA stable contre CXCR4, a présenté une croissance cellulaire plus lente, in vitro et in vivo. Afin d'identifier les gènes et les voies de signalisation impliqués dans les effets dépendants de CXCR4-CXCL12 dans le NB, des analyses du profil d'expression des gènes ont été effectuées sur les lignées cellulaires transfectées ou non (contrôle). Trois clones contrôles ont été comparés à 3 clones surexprimant CXCR4 pour chacune des lignées (IGR-NB8 et IGR-N91). Les analyses biostatiques ont identifié 10 gènes induits, dont CXCR4, et 31 gènes réprimés, communs entre tous les clones surexprimant CXCR4. Ces observations démontrent que la surexpression de CXCR4 dans le NB stimule la croissance, la survie et la migration chémotactique des cellules tumorales, mais est insuffisante pour induire ou augmenter leurs capacités invasives et métastatiques. Les voies de signalisation activées suite à la surexpression de CXCR4 et identifiées à travers le profil global de l'expression des gènes pourraient être des cibles intéressantes pour le développement de drogues capables d'inhiber la croissance tumorale. Abstact: Neuroblastoma (NB) is a devastating childhood neoplasm for which there is not yet an efficient treatment. Chemokines and their receptors have been involved in tumour growth and metastasis, and in particular the CXCR4/CXCL12 axis has been reported to mediate organ-specific cancer cells homing and invasion. The purpose of the study was to investigate the role of ectopic CXCR4 in the malignant behaviour of NB by studying tumour cell growth, survival, migration, and invasion in vitro and by validating these results using a murine orthotopic model of NB tumour progression in vivo. CXCR4 overexpression in the low metastatic, CXCR4-negative IGR-NB8 cells resulted in CXCL12-mediated chemotaxis in vitro. Furthermore, CXCR4 overexpressing cells were less affected by serum deprivation than mock-transduced cells. In vivo studies revealed that, at sacrifice, volumes of tumours developing in mice with orthotopically implanted NB8-CXCR4-C3 cells, were significantly increased compared to NB8-E6 control tumours. However, no induction of metastases was observed. The in vivo invasive and metastatic cell line IGR-N91 cell line constitutively expresses moderate levels of CXCR4. Overexpression of CXCR4 enhanced in vivo tumour growth but did not increase the occurrence of metastases. IGR-N91 cells where CXCR4 has been knocked-down by stable shRNA grew slower in vitro and in vivo. To identify genes and pathways involved in the CXCR4/CXCL12-mediated effects in NB expression, profiles analyses (Affymetrix) were performed on transduced and control cell lines. Three mock-transduced clones were compared to three CXCR4 overexpressing clones of either cell line IGR-NB8 and IGR-N91. Biostatistical analysis identified 10 commonly upregulated genes (including CXCR4) and 31 downregulated genes common to all CXCR4 overexpressing clones. These observations demonstrate that overexpression of CXCR4 in NB stimulates tumour cell growth, survival, and chemotactic migration but is not sufficient to induce or enhance invasive and metastatic capacities. Activated pathways upon CXCR4 overexpression, identified through global gene expression profiling may be interesting targets for drugs inhibiting tumour growth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nucleoside transporters (NTs) mediate the uptake of nucleosides and nucleobases across the plasma membrane, mostly for salvage purposes. The canonical NTs belong to two gene families, SLC29 and SLC28. The former encode equilibrative nucleoside transporter proteins (ENTs), which mediate the facilitative diffusion of natural nucleosides with broad selectivity, whereas the latter encode concentrative nucleoside transporters (CNTs), which are sodium-coupled and show high affinity for substrates with variable selectivity. These proteins are expressed in most cell types, exhibiting apparent functional redundancy. This might indicate that CNTs play specific roles in the physiology of the cell beyond nucleoside salvage. Here, we addressed this possibility using adenoviral vectors to restore tumor cell expression of hCNT1 or a polymorphic variant (hCNT1S546P) lacking nucleoside translocation ability. We found that hCNT1 restoration in pancreatic cancer cells significantly altered cell-cycle progression and phosphorylation status of key signal-transducing kinases, promoted poly-(ADP ribose) polymerase hyperactivation and cell death, and reduced tumor growth and cell migration. Importantly, the translocation-defective transporter triggered these same effects on cell physiology. These data predict a novel and totally unexpected biological role for the nucleoside transporter protein hCNT1 that appears to be independent of its role as mediator of nucleoside uptake by cells, thereby suggesting a transceptor function. Cell Death & Disease Anastasis Stephanou Receiving Editor Cell Death & Disease 19th Apr 2013 Dr Perez-Torras Av/ Diagonal 643. Edif. Prevosti, Pl -1 Barcelona 08028 Spain RE: Manuscript CDDIS-13-0136R, 'CDDIS-13-0136R' Dear Dr Perez-Torras, It is a pleasure to inform you that your manuscript has been evaluated at the editorial level and has now been officially accepted for publication in Cell Death & Disease, pending you meet the following editorial requirements: 1) the list of the abbreviations is missing please include Could you send us the revised text as word file via e-mail and we will proceed and transfer the paper onto our typesetters. Please download, print, sign, and return the Licence to Publish Form using the link below. This must be returned via FAX to ++ 39 06 7259 6977 before your manuscript can be published:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The members of the epidermal growth factor (EGF)/ErbB family are prime targets for cancer therapy. However, the therapeutic efficiency of the existing anti-ErbB agents is limited. Thus, identifying new molecules that inactivate the ErbB receptors through novel strategies is an important goal on cancer research. In this study we have developed a shorter form of human EGF (EGFt) with a truncated C-terminal as a novel EGFR inhibitor. EGFt was designed based on the superimposition of the three-dimensional structures of EGF and the Potato Carboxypeptidase Inhibitor (PCI), an EGFR blocker previously described by our group. The peptide was produced in E. coli with a high yield of the correctly folded peptide. EGFt showed specificity and high affinity for EGFR but induced poor EGFR homodimerization and phosphorylation. Interestingly, EGFt promoted EGFR internalization and translocation to the cell nucleus although it did not stimulate the cell growth. In addition, EGFt competed with EGFR native ligands, inhibiting the proliferation of cancer cells. These data indicate that EGFt may be a potential EGFR blocker for cancer therapy. In addition, the lack of EGFR-mediated growth-stimulatory activity makes EGFt an excellent delivery agent to target toxins to tumours over-expressing EGFR.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Among all inflammatory cells involved in COPD, those with a cytolytic or elastolytic activity are thought to play a key role in the pathogenesis of the disease. However, there is no data about the infiltration of cells expressing the CD57 marker in small airways and parenchyma of COPD patients. In this study, surgical specimens from 43 subjects undergoing lung resection due to lung cancer (9 non-smokers, 18 smokers without COPD and 16 smokers with moderate COPD) and 16 patients undergoing double lung transplantation for very severe COPD were examined. CD57+ cells, neutrophils, macrophages and mast cells infiltrating bronchioles (epithelium, smooth muscle and connective tissue) and parenchymal interstitium were localized and quantified by immunohistochemical analysis. Compared to the other groups, the small airways of very severe COPD patients showed a significantly higher density of CD57+ cells, mainly infiltrated in the connective tissue (p=0.001), and a significantly higher density of neutrophils located characteristically in the epithelium (p=0.037). Also, the density of neutrophils was significantly higher in parenchyma of very severe COPD patients compared with the rest of the groups (p=0.001). Finally, there were significant correlations between the bronchiolar density of CD57+ cells and the FEV1 values (R=-0.43, p=0.022), as well as between the parenchymal density of neutrophils and macroscopic emphysema degree (R=0.43, p=0.048) in COPD groups. These results show that CD57+ cells may be involved in COPD pathogenesis, especially in the most severe stages of the disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En aquest treball s’ha estudiat el comportament de compostos antimalàrics com els fàrmacs i els polímers en diferents situacions. Una de les barreres que ha estat identificada com a principal obstacle per a una millora de l’eficàcia dels compostos antimalàrics, és la limitació en la quantitat de fàrmac que pot ser encapsulada dins un liposoma, i que depèn de la seva solubilitat en medi aquós. Amb la inspiració de la descripció d’un nou tipus de nanocàpsules amb aplicacions oncològiques capaces d’encapsular grans quantitats de fàrmacs (protocells, Ashley et al., 2011). Els constructes formats per liposomes amb un nucli d’òxid de silici altament porós capaç de contenir el fàrmac, s’anomenen “protocells”, que en comparació als liposomes, tenen una major selectivitat i estabilitat, i permeten alliberar altes concentracions de droga directament al citosol de les cèl·lules cancerígenes. Aquest estudi es basa en la fabricació d’aquests nous nanovectors que continguin fàrmacs antimalàrics i té com a objectiu futur dirigir-los a eritròcits infectats per malària (pRBCs). Una altra part del treball és l’estudi de la distribució del polímer ISA-FITC en Anopheles atroparvus. Sabent que els polímers han estat utilitzats com a transportadors antimalàrics, es va pensar en l’opció d’eliminar el paràsit a dins del mateix mosquit, com una alternativa a tots el estudis realitzats fins ara centrats en les etapes d’infecció de l’hoste. Per aquest motiu es va idear l’experiment pensant en aquest polímer amb la intenció final de veure la seva localització en un mosquit Anopheles lliure del paràsit. OBJECTIUS: Determinació de la capacitat encapsuladora de tres tipus de nanopartícules, fabricades amb el mateix material però amb característiques de mida i càrrega diferents, incubant-les amb cinc fàrmacs antimalàrics. El blau de metilè, la primaquina, la cloroquina, la quinina i la curcumina, cadascun d’ells amb característiques de pH, solubilitat i estructura diferents. Alguns d’ells són fàrmacs que no s’han emprat en altres estudis degut a la seva toxicitat o elevada inespecificitat (la qual es pretén reduir un cop encapsulats en protocells). Construcció de “protocells” un cop determinada la millor nanopartícula encapsuladora i fàrmac candidat i determinació de la concentració de fàrmac que podien contenir, i el ritme d’alliberament d’aquest en PBS (simulant les condicions fisiològiques dels pRBCs). Estudi de la localització del polímer antimalàric ISA-FITC en l’anatomia del mosquit Anopheles Atroparvus. PROCEDIMENTS: Mètodes espectrofotomètrics Microscopia Cryo-electrònica de transmissió Microscopia confocal de fluorescència

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tumor antigen-specific CD4(+) T cells generally orchestrate and regulate immune cells to provide immune surveillance against malignancy. However, activation of antigen-specific CD4(+) T cells is restricted at local tumor sites where antigen-presenting cells (APCs) are frequently dysfunctional, which can cause rapid exhaustion of anti-tumor immune responses. Herein, we characterize anti-tumor effects of a unique human CD4(+) helper T-cell subset that directly recognizes the cytoplasmic tumor antigen, NY-ESO-1, presented by MHC class II on cancer cells. Upon direct recognition of cancer cells, tumor-recognizing CD4(+) T cells (TR-CD4) potently induced IFN-γ-dependent growth arrest in cancer cells. In addition, direct recognition of cancer cells triggers TR-CD4 to provide help to NY-ESO-1-specific CD8(+) T cells by enhancing cytotoxic activity, and improving viability and proliferation in the absence of APCs. Notably, the TR-CD4 either alone or in collaboration with CD8(+) T cells significantly inhibited tumor growth in vivo in a xenograft model. Finally, retroviral gene-engineering with T cell receptor (TCR) derived from TR-CD4 produced large numbers of functional TR-CD4. These observations provide mechanistic insights into the role of TR-CD4 in tumor immunity, and suggest that approaches to utilize TR-CD4 will augment anti-tumor immune responses for durable therapeutic efficacy in cancer patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults. Despite concerted efforts to improve current therapies and develop novel clinical approaches, patient survival remains poor. As such, increasing attention has focused on developing new therapeutic strategies that specifically target the apoptotic pathway in order to improve treatment responses. Recently, nutlins, small-molecule antagonists of MDM2, have been developed to inhibit p53-MDM2 interaction and activate p53 signaling in cancer cells. Glioma cell lines and primary cultured glioblastoma cells were treated with nutlin-3a. Nutlin-3a induced p53-dependent G1- and G2-M cell cycle arrest and apoptosis in glioma cell lines with normal TP53 status. In addition, nutlin-arrested glioma cells show morphological features of senescence and persistent induction of p21 protein. Furthermore, senescence induced by nutlin-3a might be depending on mTOR pathway activity. In wild-type TP53 primary cultured cells, exposure to nutlin-3a resulted in variable degrees of apoptosis as well as cellular features of senescence. Nutlin-3a-induced apoptosis and senescence were firmly dependent on the presence of functional p53, as revealed by the fact that glioblastoma cells with knockdown p53 with specific siRNA, or cells with mutated or functionally impaired p53 pathway, were completely insensitive to the drug. Finally, we also found that nutlin-3a increased response of glioma cells to radiation therapy. The results provide a basis for the rational use of MDM2 antagonists as a novel treatment option for glioblastoma patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults. Despite concerted efforts to improve current therapies and develop novel clinical approaches, patient survival remains poor. As such, increasing attention has focused on developing new therapeutic strategies that specifically target the apoptotic pathway in order to improve treatment responses. Recently, nutlins, small-molecule antagonists of MDM2, have been developed to inhibit p53-MDM2 interaction and activate p53 signaling in cancer cells. Glioma cell lines and primary cultured glioblastoma cells were treated with nutlin-3a. Nutlin-3a induced p53-dependent G1- and G2-M cell cycle arrest and apoptosis in glioma cell lines with normal TP53 status. In addition, nutlin-arrested glioma cells show morphological features of senescence and persistent induction of p21 protein. Furthermore, senescence induced by nutlin-3a might be depending on mTOR pathway activity. In wild-type TP53 primary cultured cells, exposure to nutlin-3a resulted in variable degrees of apoptosis as well as cellular features of senescence. Nutlin-3a-induced apoptosis and senescence were firmly dependent on the presence of functional p53, as revealed by the fact that glioblastoma cells with knockdown p53 with specific siRNA, or cells with mutated or functionally impaired p53 pathway, were completely insensitive to the drug. Finally, we also found that nutlin-3a increased response of glioma cells to radiation therapy. The results provide a basis for the rational use of MDM2 antagonists as a novel treatment option for glioblastoma patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Integrins are heterodimeric adhesion receptors mediating adhesion to extracellular matrix proteins and to other cells. Integrins are important in embryonic development, structural integrity of connective tissue, blood thrombus formation, and immune defense system. Integrins are transmembrane proteins whose ligand binding capacity (activity) is regulated by large conformational changes. Extracellular ligand binding or intracellular effector binding to integrin cytoplasmic face regulate integrin activity. Integrins are thus able to mediate bi-directional signaling. Integrin function is also regulated by intracellular location. Integrins are constantly recycled from endocytic vesicles to plasma membrane, and this has been shown to be important for cell migration and invasion as well. Deregulation of integrin functionality can lead to deleterious illnesses, such as bleeding or inflammatory disorders. It is also evident that integrin deregulation is associated with cancer progression. In this study, a novel Beta1 integrin associating protein, Rab21, was characterized. Rab21 binding to integrin cytoplasmic tail was shown to be important for Beta1 integrin endo- and exocytosis – intracellular trafficking. It was furher shown that this interaction has an important role in cell adhesion, migration, as well as in the final step of cell division, cytokinesis. This work showed that abrogation of Rab21 function or β1 integrin endocytic traffic, can lead to defects in cell division and results in formation of multinucleated cells. Multinucleation and especially tetraploidy can be a transient pathway to aneuploidy and tumorigenesis. This work characterized chromosomal deletions in rab21 locus in ovarian and prostate cancer samples and showed that a cell line with rab21 deletion also had impairment in cell division, which could be rescued by Rab21 re-expression. The work demonstrates an important role for Rab21 and Beta1 integrin traffic regulation in cell adhesion and division, and suggests a probable associaton with tumorigenesis. In this study, Beta1 integrin activity regulation was also addressed. A novel cell array platform for genome-scale RNAi screenings was characterized here. More than 4500 genes were knocked-down in prostate cancer cells using siRNA-mediated silencing. The effects on Beta1 integrin activity were analyzed upon knock-downs. The screen identified more that 400 putative regulators of Beta1 integrin activity in prostate cancer. In conclusion, this work will help us to understand complex regulatory pathways involved in cancer cell adhesion and migration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The enzyme fatty acid synthase (FASN) is highly expressed in many human carcinomas and its inhibition is cytotoxic to human cancer cells. The use of FASN inhibitors has been limited until now by anorexia and weight loss, which is associated with the stimulation of fatty acid oxidation. Materials and Methods: The in vitro effect of (-)-epigallocatechin-3-gallate (EGCG) on fatty acid metabolism enzymes, on apoptosis and on cell signalling was evaluated. In vivo, the effect of EGCG on animal body weight was addressed. Results: EGCG inhibited FASN activity, induced apoptosis and caused a marked decrease of human epidermal growth factor receptor 2 (HER2), phosphatidylinositol 3-kinase (PI3K)/AKT and extracellular (signal)-regulated kinase (ERK) 1/2 proteins, in breast cancer cells. EGCG did not induce a stimulatory effect on CPT-1 activity in vitro (84% of control), or on animal body weight in vivo (99% of control). Conclusion: EGCG is a FASN inhibitor with anticancer activity which does not exhibit cross-activation of fatty acid oxidation and does not induce weight loss, suggesting its potential use as an anticancer drug.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gonadal somatic cell and adrenocortical endocrine tumors are rare. The incidence of adrenocortical carcinomas is only 1-2/1000000 a year. However, they are aggressive, especially in adulthood and currently surgery is the only curative treatment. Cytotoxic agents are in use in advanced cancers, but side effects and multidrug resistance are often problems. Thus there is a need for novel curative treatment methods. In contrast, ovarian granulosa cell tumors and testicular Leydig cell tumors are usually benign, especially at a younger age. The aim of the present thesis was to study a novel targeted treatment method through luteinizing hormone/chorionic gonadotropin receptor (LHCGR) in a transgenic mouse tumor model. The cytotoxic agent was lytic peptide Hecate-CGbeta conjugate where 23 amino acid Hecate, a synthetic form of honeybee venom melittin, was conjugated to 15 amino acid fragment of human chorionic gonadotropin β subunit. Lytic peptides are known to act only on negatively charged cells, such as bacteria and cancer cells and hereby, due to hCGbeta fragment, the conjugate is able to bind directly to LHCGR bearing cancer cells, saving the healthy ones. The experiments were carried out in inhibin-alpha-Simian Virus 40-T-antigen transgenic mice that are known to express LHCGR-bearing gonadal tumors, namely Leydig and granulosa cell tumors by 100% penetrance. If the mice are gonadectomized prepubertally they form adrenocortical tumors instead. Transgenic and wild type mice were treated for three consecutive weeks with control vehicle, Hecate or Hecate-CGbeta conjugate. GnRH antagonist or estradiol was given to a group of mice with or without Hecate-CGbeta conjugate to analyze the additive role of gonadotropin blockage in adrenocortical tumor treatment efficacy. Hecate-CGbeta conjugate was able to diminish the gonadal and adrenal tumor size effectively in males. No treatment related side effects were found. Gonadotropin blockage through GnRH antagonist was the best treatment in female adrenal tumors. The mode of cell death by Hecate-CGbeta conjugate was proven to be through necrosis. LHCGR and GATA-4 were co-expressed in tumors, where the treatment down-regulated their expression simultaneously, suggesting their possible use as tumor markers. In conclusion, the present thesis showed that Hecate-CGbeta conjugate targets its action selectively through LHCGR and selectively kills the LHCGR bearing tumor cells. It works both in gonadal somatic and in ectopic LHCGR bearing adrenal tumors. These results establish a more general principle that receptors expressed ectopically in malignant cells can be exploited in targeted cytotoxic therapies without affecting the normal healthy cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two new marine metabolites, 3Z, 6Z, 9Z-dodecatrien-1-ol (1) from the ascidian Botrylloides giganteum and 4H-pyran-2ol acetate from the sponge Ircinia felix (4) are herein reported. The known bromotyrosine compounds, 2-(3,5-dibromo-4-methoxyphenyl)-N,N,N-dimethylethanammonium (2) and 2,6-dibromo-4-(2-(trimethylammonium)ethyl)phenol (3), have been isolated from the sponge Verongula gigantea. Serotonin (5) is reported for the first time from the sponge Cliona delitrix, and tambjamines A (15) and D (16) isolated as their respective salts from the nudibranch Tambja eliora. Only tambjamine D presented cytotoxicity against CEM (IC50 12.2 µg/mL) and HL60 (IC50 13.2 µg/mL) human leukemya cells, MCF-7 breast cancer cells (IC50 13.2 µg/mL), colon HCT-8 cancer cells (IC50 10.1 µg/mL) and murine melanoma B16 cancer cells (IC50 6.7 µg/mL).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En la lluita contra el càncer, la recerca de nous fàrmacs cada cop més efectius i específics sovint troba un escull important: en molts tumors hi ha una petita fracció de cèl·lules resistents, que no es poden eliminar fàcilment. Tanmateix, el principal problema no és aquest, sinó que, a més, acostumen a respondre als fàrmacs incrementant la taxa de proliferació i la capacitat de fer metàstasi. Això fa que alguns tractaments no acabin de ser del tot efectius a llarg termini, per la presència cada cop més nombrosa i dispersa d'aquestes cèl·lules canceroses resistents. L'equip de recerca de Joan Massagué, al Memorial Sloan Kettering Cancer Center de Nova York, ha demostrat que aquest efecte a llarg termini induït pels mateixos fàrmacs és perquè les cèl·lules sensibles, abans de morir, preparen un ambient molt favorable per a les resistents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Invasive malignant melanoma (MM) is an aggressive tumor with no curative therapy available in advanced stages. Nuclear corepressor (NCoR) is an essential regulator of gene transcription, and its function has been found deregulated in different types of cancer. In colorectal cancer cells, loss of nuclear NCoR is induced by Inhibitor of kappa B kinase (IKK) through the phosphorylation of specific serine residues. We here investigate whether NCoR function impacts in MM, which might have important diagnostic and prognostic significance. By IHC, we here determined the subcellular distribution of NCoR in a cohort of 63 primary invasive MM samples, and analyzed its possible correlation with specific clinical parameters. We therefore used a microarray-based strategy to determine global gene expression differences in samples with similar tumor stage, which differ in the presence of cytoplasmic or nuclear NCoR. We found that loss of nuclear NCoR results in upregulation of a specific cancer-related genetic signature, and is significantly associated with MM progression. Inhibition of IKK activity in melanoma cells reverts NCoR nuclear distribution and specific NCoR-regulated gene transcription. Analysis of public database demonstrated that inactivating NCoR mutations are highly prevalent in MM, showing features of driver oncogene.