940 resultados para C sequestration rate
Resumo:
We provide new information on changes in tundra plant sexual reproduction in response to long-term (12 years) experimental warming in the High Arctic. Open-top chambers (OTCs) were used to increase growing season temperatures by 1-2 °C across a range of vascular plant communities. The warming enhanced reproductive effort and success in most species; shrubs and graminoids appeared to be more responsive than forbs. We found that the measured effects of warming on sexual reproduction were more consistently positive and to a greater degree in polar oasis compared with polar semidesert vascular plant communities. Our findings support predictions that long-term warming in the High Arctic will likely enhance sexual reproduction in tundra plants, which could lead to an increase in plant cover. Greater abundance of vegetation has implications for primary consumers - via increased forage availability, and the global carbon budget - as a function of changes in permafrost and vegetation acting as a carbon sink. Enhanced sexual reproduction in Arctic vascular plants may lead to increased genetic variability of offspring, and consequently improved chances of survival in a changing environment. Our findings also indicate that with future warming, polar oases may play an important role as a seed source to the surrounding polar desert landscape.
Resumo:
Sediment accumulation rates, computed using agesediment thickness curves obtained from DSDP cores, are rarely corrected for compaction or bedding attitude to better approximate true sediment accumulation rates (c.f. van Andel et al., 1975; Davies et al., 1977; and Whitman and Davies, 1979). Variations with depth in either of these factors can hinder interpreting relative rates of sedimentary processes associated with a particular depositional environment. This problem becomes particularly relevant for convergent margin sediments, which often display variable bedding attitudes and pronounced changes in porosity, bulk density, and other parameters related to the compaction process at shallow depth. These rapid shallow changes render correlation of sedimentation rates within a single transect of holes very difficult. Two techniques have been applied to data collected from a transect of holes along the southwestern Mexico continental margin, DSDP Leg 66 (Fig. 1), to correct sediment accumulation rates for variations in compaction and bedding attitude. These corrections should help resolve true fluctuations in accumulation rates and their implications regarding convergent margin processes.
Resumo:
Fluid circulation in peridotite-hosted hydrothermal systems influences the incorporation of carbon into the oceanic crust and its long-term storage. At low to moderate temperatures, serpentinization of peridotite produces alkaline fluids that are rich in CH4 and H2. Upon mixing with seawater, these fluids precipitate carbonate, forming an extensive network of calcite veins in the basement rocks, while H2 and CH4 serve as an energy source for microorganisms. Here, we analyzed the carbon geochemistry of two ancient peridotite-hosted hydrothermal systems: 1) ophiolites cropping out in the Northern Apennines, and 2) calcite-veined serpentinites from the Iberian Margin (Ocean Drilling Program (ODP) Legs 149 and 173), and compare them to active peridotite-hosted hydrothermal systems such as the Lost City hydrothermal field (LCHF) on the Atlantis Massif near the Mid-Atlantic Ridge (MAR). Our results show that large amounts of carbonate are formed during serpentinization of mantle rocks exposed on the seafloor (up to 9.6 wt.% C in ophicalcites) and that carbon incorporation decreases with depth. In the Northern Apennine serpentinites, serpentinization temperatures decrease from 240 °C to < 150 °C, while carbonates are formed at temperatures decreasing from ~ 150 °C to < 50 °C. At the Iberian Margin both carbonate formation and serpentinization temperatures are lower than in the Northern Apennines with serpentinization starting at ~ 150 °C, followed by clay alteration at < 100 °C and carbonate formation at < 19-44 °C. Comparison with various active peridotite-hosted hydrothermal systems on the MAR shows that the serpentinites from the Northern Apennines record a thermal evolution similar to that of the basement of the LCHF and that tectonic activity on the Jurassic seafloor, comparable to the present-day processes leading to oceanic core complexes, probably led to formation of fractures and faults, which promoted fluid circulation to greater depth and cooling of the mantle rocks. Thus, our study provides further evidence that the Northern Apennine serpentinites host a paleo-stockwork of a hydrothermal system similar to the basement of the LCHF. Furthermore, we argue that the extent of carbonate uptake is mainly controlled by the presence of fluid pathways. Low serpentinization temperatures promote microbial activity, which leads to enhanced biomass formation and the storage of organic carbon. Organic carbon becomes dominant with increasing depth and is the principal carbon phase at more than 50-100 m depth of the serpentinite basement at the Iberian Margin. We estimate that annually 1.1 to 2.7 × 1012 g C is stored within peridotites exposed to seawater, of which 30-40% is fixed within the uppermost 20-50 m mainly as carbonate. Additionally, we conclude that alteration of oceanic lithosphere is an important factor in the long-term global carbon cycle, having the potential to store carbon for millions of years.
Resumo:
A continuous age model for the brief climate excursion at the Paleocene-Eocene boundary has been constructed by assuming a constant flux of extraterrestrial 3He (3He[ET]) to the seafloor. 3He[ET] measurements from ODP Site 690 provide quantitative evidence for the rapid onset (
Resumo:
This publication presents results of microbiological and biogeochemical studies in the White Sea. Material was obtained during a series of expeditions in 1999-2002. The studies were carried out in the open part of the White Sea, in the Onega, Dvina and Kandalaksha Bays, as well as in the intertidal zone of the Kandalaksha Bay. Quantitative characteristics of activity of microbial processes in waters and bottom sediments of the White Sea were obtained. The total number of bacteria was equal to 150000-800000 cells/ml, and intensity of dark CO2 assimilation was equal to 0.9-17 µg C/l/day. Bacterial sulfate reduction was equal to 3-150 mg S/m**2/day, and methane formation and oxidation was equal to 13-6840 and 20-14650 µl CH4/m**2/day, respectively. Extremely high values of intensity of all principal microbial processes were found in intertidal sediments rich in organic matter: under decomposing macrophytes, in local pits at the lower intertidal boundary, and in the mouth of a freshwater brook. Average hydrogen sulfide production in highly productive intertidal sediments was 1950-4300 mg S/m**2/day, methane production was 0.5-8.7 ml CH4/m**2/day, and intensity of methane oxidation was up to 17.5 ml CH4/m**2/day. Calculations performed with account for areas occupied by microlandscapes of increased productivity showed that diurnal production of H2S and CH4 per 1 km**2 of the intertidal zone (August) was estimated as 60.8-202 kg S/km**2/day and 192-300 l CH4/km**2/day, respectively.
Resumo:
The Neogene sediments from DSDP site 341 on the Voring Plateau, Norwegian Sea, contain a thin glauconitic pellet-bearing subunit, which separates underlying pelagic clays from overlying glacial-marine sediments. Oxygen isotope measurements of benthic foraminifera show a delta18O shift of + 1? during deposition of this subunit, probably a combined effect of a drop in bottom water temperature and a rise in seawater delta18O. The chronology of this sedimentological and O isotope transition is, however, poorly constrained by fossil evidence. Rb-Sr dating of glauconitic pellets indicates that the lower part of the glauconitic subunit was deposited 11.6 +/- 0.2 Ma ago. Further geochronological evidence, derived from the Sr and C isotopic compositions of foraminifera compared with known seawater-time variations, indicates that the lower pelagic clays are early to middle Miocene, deposited at a mean rate of ~15 m/Ma. The glauconitic subunit contains part of the middle Miocene and probably all of the late Miocene in a condensed sequence with a very low mean depositional rate (~0.2 m/Ma). The overlying glacial marine sediments are probably Pliocene, with a high mean rate of deposition, ~45 m/Ma. This is the first application of C, O and Sr isotopic stratigraphy combined with Rb-Sr dating of glauconitic minerals, and it illustrates the applications of this integrated approach in geochronology.
Resumo:
Most deep ocean carbon flux profiles show low and almost constant fluxes of particulate organic carbon (POC) in the deep ocean. However, the reason for the non-changing POC fluxes at depths is unknown. This study presents direct measurements of formation, degradation, and sinking velocity of diatom aggregates from laboratory studies performed at 15 °C and 4 °C during a three-week experiment. The average carbon-specific respiration rate during the experiment was 0.12 ± 0.03 at 15 °C, and decreased 3.5-fold when the temperature was lowered to 4 °C. No direct influence of temperature on aggregate sinking speed was observed. Using the remineralisation rate measured at 4 °C and an average particle sinking speed of 150 m d**-1, calculated carbon fluxes were similar to those collected in deep ocean sediment traps from a global data set, indicating that temperature plays a major role for deep ocean fluxes of POC.
Resumo:
The vertical distribution of copepods, fecal pellets and the fecal pellet production of copepods were measured at seven stations across the Southern Indian Ocean from productive areas off South Africa to oligotrophic waters off Northern Australia during October/November 2006. We quantified export of copepod fecal pellet from surface waters and how much was retained. Furthermore, the potential impact of Oncaea spp. and harpacticoid copepods on fecal pellets degradation was evaluated and found to be regional substantial. The highest copepod abundance and fecal pellet production was found in the western nutrient-rich stations close to South Africa and the lowest at the central oligotrophic stations. The in situ copepod fecal pellet production varied between 1 and 1,000 µg C/m**3/day. At all stations, the retention of fecal pellets in the upper 400 m of the water column was more than 99% and the vertical export of fecal pellets was low (<0.02 mg/m**2/day).