934 resultados para Brain image classification
Resumo:
The frequency of prospective memory failure in individuals with severe traumatic brain injury (TBI) was investigated by comparison with a non-brain-injured control group. Self-awareness of prospective memory function was also assessed by comparing self-ratings with ratings by significant others. Study participants included 33 individuals with severe TBI and 29 non-brain-injured persons. Each participant nominated a close friend or relative who completed the informant's version of the questionnaire. Participants and their significant others both rated the participants' frequency of prospective memory lapses using the Comprehensive Assessment of Prospective Memory (CAPM). An independent groups design was adopted to compare the TBI and control groups. No significant difference was found between the TBI and control participants' self-ratings of frequency of prospective memory failure, but ratings by significant others were significantly different. The TBI group demonstrated less self-awareness (i.e. underestimated the frequency of prospective memory failure compared to significant others) than the control group.
Resumo:
Objective: To document the acute characteristics of swallowing impairment in a group of children post moderate/severe traumatic brain injury (TBI) by means of videofluoroscopy. Participants: Eighteen children with moderate/severe TBI. Main Outcome Measure: Videofluoroscopy at an average of 27.7 days post-injury. Results: Subjects demonstrated a range of dysphagia severity levels: mild-moderate (n = 8), moderate (n = 6), moderate-severe (n = 3), and severe (n = 1) and had a combination of oral and pharyngeal phase characteristics. More specifically; observable features or physiological impairments that were identified included reduced lingual control, hesitancy of tongue movement, repetitive tongue pumping, the presence of aspiration (including silent aspiration), delayed swallow reflex trigger, reduced laryngeal elevation and closure, and reduced peristalsis. Conclusions: These data highlight the diversity of swallowing deficits and dysphagia severity levels in children following TBI and suggest that the former are consistent with a pattern of oropharyngeal impairments.
Resumo:
A miniature pressure transducer was used to assess the interlabial contact pressures produced by a group of 19 adults (mean age 30.6 years) with dysarthria following severe traumatic brain injury (TBI) during a set of speech and nonspeech tasks. Ten parameters relating to lip strength, endurance, rate of movement and lip pressure accuracy and stability were measured from the nonspeech tasks. The results attained by the TBI group were compared against a group of 19 age- and sex-matched control subjects. Significant differences between the groups were found for maximum interlabial contact pressure, maximum rate of repetition of maximum pressure, and lip pressure accuracy at 50 and 10% levels of maximum pressure. In regards to speech, the interlabial contact pressures generated by the TBI group and control group did not differ significantly. When expressed as percentages of maximum pressure, however, the TBI group's interlabial pressures appeared to have been generated with greater physiological effort. Copyright (C) 2002 S. Karger AG, Basel.
Resumo:
Two of the best understood somatic cell mRNA cytoplasmic trafficking elements are those governing localization of beta-actin and myelin basic protein mRNAs. These cis-acting elements bind the trans-acting factors fibroblast ZBP-1 and hnRNP A2, respectively. It is not known whether these elements fulfil other roles in mRNA metabolism. To address this question we have used Edman sequencing and western blotting to identify six rat brain proteins that bind the beta-actin element (zipcode). All are known RNA-binding proteins and differ from ZBP-1. Comparison with proteins that bind the hnRNP A2 and AU-rich response elements, A2RE/A2RE11 and AURE, showed that AURE and zipcode bind a similar set of proteins that does not overlap with those that bind A2RE11. The zipcode-binding protein, KSRP, and hnRNP A2 were selected for further study and were shown by confocal immunolluorescence microscopy to have similar distributions in the central nervous system, but they were found in largely separate locations in cell nuclei. In the cytoplasm of cultured oligodendrocytes they were segregated into separate populations of cytoplasmic granules. We conclude that not only may there be families of trans-acting factors for the same cis-acting element, which are presumably required at different stages of mRNA processing and metabolism, but independent factors may also target different and multiple RNAs in the same cell.
Resumo:
An efficient representation method for arbitrarily shaped image segments is proposed. This method includes a smart way to select wavelet basis to approximate the given image segment, with improved image quality and reduced computational load.
Resumo:
This study investigated the sensitivity of information processing, recall and orientation tasks to the presence of mild Traumatic Brain Injury (mTBI). Fifty-six (40 male, 16 female) mTBI patients and 85 (57 male and 28 female) controls with orthopaedic injuries were tested within 24 hr of injury in the Department of Emergency Medicine. mTBI patients answered fewer orientation questions and recalled fewer words in delayed recall than orthopaedic patients. mTBI patients judged fewer sentences in 2 min than orthopaedic controls, and female mTBI patients judged fewer sentences than male mTBI patients. Male mTBI patients correctly recalled fewer words during immediate memory and learning than female mTBI patients and orthopaedic controls. Those mTBI patients with a history of previous head injuries did not perform more poorly than those mTBI patients without previous head injuries. These results indicate that tests of speed of information processing, word learning and orientation questions are sensitive to the acute effects of mTBI.
Resumo:
Areas of the limbic system of adult male Wistar rats were screened for kainic-acid-induced gene expression. Polymerase-chain-reactionbased differential display identified a 147-bp cDNA fragment, which represented an mRNA that was upregulated in the entorhinal cortex and hippocampus in the kainic-acid-treated animals. The sequence was 97.8% homologous to rat 14-3-3 zeta isoform mRNA. Detailed Northern analysis revealed increased mRNA levels in the entorhinal cortex I h after kainic acid exposure and continued elevation 24 h post-injection in both the entorhinal cortex and hippocampus. Western blot analyses confirmed that the protein product of this gene was also present in increased amounts over the same time period. Immunohistochemistry and terminal transferase-mediated dUTP nick end labelling (TUNEL) detected expression of 14-3-3 protein exclusively in the entorhinal cortex and hippocampus, and only in TUNEL-positive neuronal cells. Expression of the tumor suppressor protein, p53 was also induced by kainate injection, and was co-localized with 14-3-3 zeta protein in selected cells only in the affected brain regions. The increase gene expression of 14-3-3 represents a transcription-mediated response associated with region selective neuronal damage induced by kainic acid. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Development of a unified classification system to replace four of the systems currently used in disability athletics (i.e., track and field) has been widely advocated. The definition and purpose of classification, underpinned by taxonomic principles and collectively endorsed by relevant disability sport organizations, have not been developed but are required for successful implementation of a unified system. It is posited that the International classification of functioning. disability, and health (ICF), published by the World Health Organization (2001), and current disability athletics systems are, fundamentally, classifications of the functioning and disability associated with health conditions and are highly interrelated. A rationale for basing a unified disability athletics system on ICF is established. Following taxonomic analysis of the current systems, the definition and purpose of a unified disability athletics classification are proposed and discussed. The proposed taxonomic framework and definitions have implications for other disability sport classification systems.
Resumo:
hlx1 is a related homeobox gene expressed in a dynamic spatiotemporal expression pattern during development of the zebrafish brain. The homologues of hlx1, mouse dbx1 and Xenopus Xdbx, are known to play a role in the specification of neurons in the spinal cord. However, the role of these molecules in the brain is less well known. We have used two different approaches to elucidate a putative function for hlx1 in the developing zebrafish brain. Blastomeres were injected with either synthetic hlx1 mRNA in gain-of-function experiments or with antisense morpholino oligonucleotides directed against hlx1 in loss-of-function experiments. Mis-expression of hlx1 produced severe defects in brain morphogenesis as a result of abnormal ventricle formation, a phenotype we referred to as fused-brain. These animals also showed a reduction in the size of forebrain neuronal clusters as well as abnormal axon pathfinding. hlx1 antisense morpholinos specifically perturbed hindbrain morphogenesis leading to defects in the integrity of the neuroepithelium. While hindbrain patterning was in the most part unaffected there were select disruptions to the expression pattern of the neurogenic gene Zash1B in specific rhombomeres. Our results indicate multiple roles for hlx1 during zebrafish brain morphogenesis.