860 resultados para Brain SPECT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Neural stem/progenitor cell (NSP) biology and neurogenesis in adult central nervous system (CNS) are important both towards potential future therapeutic applications for CNS repair, and for the fundamental function of the CNS. In the present study, we report the characterization of NSP population from subventricular zone (SVZ) of neonatal piglet brain using in vivo and in vitro systems. We show that the nestin and vimentin-positive neural progenitor cells are present in the SVZ of the lateral ventricles of neonatal piglet brain. In vitro, piglet NSPs proliferated as neurospheres, expressed the typical protein of neural progenitors, nestin and a range of well-established neurodevelopmental markers. Upon dissociation and subculture, piglet NSPs differentiated into neurons and glial cells. Clonal analysis demonstrates that piglet NSPs are multi-potent and retain the capacity to generate both glia and neurons. These cells expressed VEGF, VEGFR1, VEGFR2 and Neuropilin-1 and -2 mRNAs. Real time PCR revealed that SVZ NSPs from newborn piglet expressed total VEGF and all VEGF splice variants. These findings show that piglet NSPs may be helpful to more effectively design growth factor based strategies to enhance endogenous precursor cells for cell transplantation studies potentially leading to the application of this strategy in the nervous system disease and injury.
Resumo:
The diagnosis of rabies in bats is usually performed using the brain of suspected animals. The main hypothesis tested by the present study was whether the aspiration method using a plastic pipette (Pasteur type) was effective in the collection of bat brain sample for rabies diagnosis when compared to the skull-opening method. A total of 200 bats of 4 species were studied: Molossus rufus E. Geoffroy, 1805, Molossus molossus (Pallas, 1766), Artibeus lituratus (Olfers, 1818) and Myotis nigricans (Schinz, 1821). The proportion of brain weight compared to body weight was statistically higher when using the traditional method, although the brain mass collected by the aspiration method was enough for rabies diagnosis and did not damage any skull biometric characteristics. The results demonstrate that both collection methods detected positive samples, while the aspiration method has the advantage of skull preservation, permitting the identification of the species.
Resumo:
P>In developing countries such as Brazil, where canine rabies is still a considerable problem, samples from wildlife species are infrequently collected and submitted for screening for rabies. A collaborative study was established involving environmental biologists and veterinarians for rabies epidemiological research in a specific ecological area located at the São Paulo State, Brazil. The wild animals' brains are required to be collected without skull damage because the skull's measurements are important in the identification of the captured animal species. For this purpose, samples from bats and small mammals were collected using an aspiration method by inserting a plastic pipette into the brain through the magnum foramen. While there is a progressive increase in the use of the plastic pipette technique in various studies undertaken, it is also appreciated that this method could foster collaborative research between wildlife scientists and rabies epidemiologists thus improving rabies surveillance.
Resumo:
The effect of protein-calorie malnutrition during gestation on the brain amino acids of rat pups was studied following nutritional recovery during lactation. The brain amino acids of rat pups born to dam rats malnourished during gestation were studied after these rat pups received proper nutrition during lactation. Pregnant rats were fed a 1% protein diet with total caloric intake restricted to half that of controls. After birth, the offspring of rats fed on deficient diets were nurtured up to the 28th day postpartum by foster mothers receiving adequate diets. At this time, the offspring were killed. The control group consisted of offspring from pregnant rats fed a diet with adequate protein (21%) and calories during the entire gestation and lactation period. Quantitation of brain amino acids in the pups at 28 days postpartum showed lower concentrations of essential and nonessential amino acids in the rats malnourished during gestation. Concentrations of histidine, glycine, and α-aminobutyric acids were all reduced. These findings demonstrate that the brains of rat pups malnourished during gestation show persistent decreases in specific brain amino acids after adequate postpartum nutrition.
Resumo:
Canine brains infected with rabies virus were submitted to decomposition by being left at room temperature of 25 to 29 degrees C for up to 168 h. At 24 h intervals, brain fragments were analyzed by immunofluorescence (IF) and by the mouse intracerebral inoculation (MI) test to confirm the diagnosis of rabies and to measure the putrefaction effect on the accuracy of the diagnosis. Forty eight h after the beginning of the experiment, the MI test showed signs of impairment with four negative results, while after 72 h, 100% of the results were negative to the MI test and only one result was negative to the IF test, indicating that the threshold period for accurate diagnosis is 24 to 48 h before putrefaction. The authors recommend the shipment of suspected cases of rabies to the laboratory for confirmation, but the use of putrid materials for diagnosis is meaningless because of false-negative results.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Apert Syndrome, also called acrocephalosyndactylia type 1, is characterized by craniostenosis with early fusion of sutures of the vault and/ or cranial base, associated to mid-face hypoplasia, symmetric syndactylia of the hands and feet and other systemic malformations. CNS malformations and intracranial hypertension are frequently observed in these patients. Early surgical treatment aims to minimize the deleterious effects of intracranial hypertension. Fronto-orbital advancement, the usual surgical technique, increases the intracranial volume and improves the disposition of encephalic structures previously deformed by a short skull. This study analyzes CNS alterations revealed by magnetic resonance in 18 patients presenting Apert Syndrome, and the conformational alterations in the encephalic structures after surgical treatment. The patients' age in February 2001 ranged from 14 to 322 months (m=107). Image study included brain magnetic resonance showing ventricular enlargement in five cases (27.8%), corpus callosum hypoplasia in five cases (27.8%), septum pellucidum hypoplasia in five cases (27.8%), cavum vergae in two cases (11.1%) and, arachnoid cyst in the posterior fossa in two cases (11.1%). Absence of CNS alterations was noted in 44.4% of cases. A corpus callosum morphologic index was established by dividing its height by its length, which revealed values that ranged from 0.4409 to 1.0237. The values of this index were correlated to the occurrence or absence of surgical treatment (p=0.012; t=2.83). Data analysis allowed the conclusion that the corpus callosum morphologic measure quantified the conformational alterations of the cerebral structures determined by the surgical treatment.
Resumo:
As several structures of the central nervous system are involved in the control of hydromineral and cardiovascular balance we investigated whether the natriorhexigenic and pressor response induced by the injection of ANG II into the 3rd V could be mediated by vasopressinergic and nitrergic system. Male Holtzman rats weighing 200-250 g with cannulae implanted into the 3rd V were used. The drugs were injected in 0.5 μL over 30-60 sec. Controls were injected with a similar volume of 0.15 M NaCl. ANGII increased the water intake vs control. AVPA injected into 3rd V prior to ANGII decreased the dipsogenic effect of ANGII. L-arginine also decreased the water intake induced by ANGII. AVPA plus L-arginine inhibit the water intake induced by ANGII. 7NIT injected prior to ANGII potentiated the dipsogenic effect of ANGII. Pre-treatment with ANGII increased the sodium ingestion vs control. AVPA decreased the ANGII effect in sodium intake. L-arginine also decreased the natriorhexigenic effect of ANGII. The combination of L-arginine and AVPA inhibit the sodium intake induced by ANGII. 7NIT injected prior to ANGII potentiated the sodium intake induced by ANGII. ANGII induced an increase in Mean Arterial Pressure (MAP) vs control. AVPA and L-arginine induced a decreased in the pressor effect of ANGII. The combination of L-arginine and AVPA inhibit the pressor effect of ANGII. 7NIT injected prior to ANGII into 3rd V potentiated the pressor effect of ANGII. These data suggest that arginine vasopressin V 1 receptors and Nitric Oxide (NO) within the circumventricular structures may be involved in sodium intake and pressor response induced by the activation of ANGII receptors within the circumventricular neurons. These studies revealed the involvement of sodium appetite by utilizing the angiotensinergic, vasopressinergic and nitrergic system in the central regulation of blood pressure. © 2006 Asian Network for Scientific Information.
Resumo:
Molecular neurobiology has provided an explanation of mechanisms supporting mental functions as learning, memory, emotion and consciousness. However, an explanatory gap remains between two levels of description: molecular mechanisms determining cellular and tissue functions, and cognitive functions. In this paper we review molecular and cellular mechanisms that determine brain activity, and then hypothetize about their relation with cognition and consciousness. The brain is conceived of as a dynamic system that exchanges information with the whole body and the environment. Three explanatory hypotheses are presented, stating that: a) brain tissue function is coordinated by macromolecules controlling ion movements, b) structured (amplitude, frequency and phase-modulated) local field potentials generated by organized ionic movement embody cognitive information patterns, and c) conscious episodes are constructed by a large-scale mechanism that uses oscillatory synchrony to integrate local field patterns. © by São Paulo State University.
Resumo:
Insulin is an important modulator of growth and metabolic function in the central nervous system. The aim of this study was to investigate the influence of swimming physical training (at 32̈±1̈C, 1 hr/day, 5 days/week, with an overload equivalent to 5% of the body weight, for 4 weeks) on brain insulin concentrations in alloxan induced type 1 diabetic rats. Training attenuated hyperglycemia but had no effect on insulinemia in diabetic rats. Hematocrit and blood albumin values remained without changes. Brain insulin did not change in diabetic rats. However, physical training increased the concentration in both control and diabetic rats. It is concluded that in the present experimental conditions, diabetes had no influence on brain insulin, however moderate physical training increased the hormone in both control and diabetic animals.
Resumo:
Triplicate groups of juvenile suribim were fed for 183 days one of four different isonitrogenous (47.6% crude protein) and isolipidic (18.7% lipid) diets formulated using three different lipid sources: 100% fish oil (FO, diet 1); 100% pig lard (L, diet 2); 100% soybean oil (SO, diet 3), and FO/L/SO (1:1:1, w/w/w; diet 4). The tissue levels of fatty acids 18:2n - 6 and 18:3n - 3 decreased relative to corresponding dietary fatty acid values. The 20:5n - 3 and 22:6n - 3 composition of muscle and liver neutral lipids were linearly correlated with corresponding dietary fatty acid composition. In contrast, the 22:6n - 3 composition of the brain and eye were similar among treatments. The 22:6n - 3 level was enriched in all tissues, particularly in the neural tissues. Similar results were observed for tissue polar lipids: fatty acids content reflected dietary composition, with the exception of the 22:6n - 3 level, which showed enrichment and no differences between groups. Given these results, the importance of the biochemical functions (transport and/or metabolism) of 22:6n - 3 in the development of the neural system of surubim warrants further investigation. © Springer Science+Business Media B.V. 2008.
Resumo:
The discovery of participation of astrocytes as active elements in glutamatergic tripartite synapses (composed by functional units of two neurons and one astrocyte) has led to the construction of models of cognitive functioning in the human brain, focusing on associative learning, sensory integration, conscious processing and memory formation/retrieval. We have modelled human cognitive functions by means of an ensemble of functional units (tripartite synapses) connected by gap junctions that link distributed astrocytes, allowing the formation of intra- and intercellular calcium waves that putatively mediate large-scale cognitive information processing. The model contains a diagram of molecular mechanisms present in tripartite synapses and contributes to explain the physiological bases of cognitive functions. It can be potentially expanded to explain emotional functions and psychiatric phenomena. © MSM 2011.