922 resultados para Bone Cell Adhesion, Ion-implanted, Titanium Discs, Argon ions, Adhesion and Proliferation, Osteoblast growth, Cell Adhesion
Resumo:
Resident, non-immune cells express various pattern-recognition receptors and produce inflammatory cytokines in response to microbial antigens, during the innate immune response. Alveolar bone resorption is the hallmark of destructive periodontitis and it is caused by the host response to bacteria and their mediators present on the biofilm. The balance between the expression levels of receptor activator of nuclear factorkappa B ligand (RANKL) and osteoprotegerin (OPG) is pivotal for osteoclast differentiation and activity and has been implicated in the progression of bone loss in periodontitis. To assess the contribution of resident cells to the bone resorption mediated by innate immune signaling, we stimulated fibroblasts and osteoblastic cells with LPS from. Escherichia coli (TLR4 agonist), Porphyromonas gingivalis (TLR2 and -4 agonist), and interleukin-1 beta (as a control for cytokine signaling through Toll/IL-1receptor domain) in time-response experiments. Expression of RANKL and OPG mRNA was studied by RT-PCR, whereas the production of RANKL protein and the activation of p38 MAPK and NF-kB signaling pathways were analyzed by western blot. We used biochemical inhibitors to assess the relative contribution of p38 MAPK and NF-kB signaling to the expression of RANKL and OPG induced by TLR2, -4 and IL1β in these cells. Both p38 MAPK and NFkB pathways were activated by these stimuli in fibroblasts and osteoblasts, but the kinetics of this activation varied in each cell type and with the nature of the stimulation. E. coli LPS was a stronger inducer of RANKL mRNA in fibroblasts, whereas LPS from P. gingivalis downregulated RANKL mRNA in periodontal ligament cells but increased its expression in osteoblasts. IL-1β induced RANKL in both cell types and without a marked effect on OPG expression. p38 MAPK was more relevant than NF-kB for the expression of RANKL and OPG in these cell types.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this study was to evaluate and compare the repair of bone defects filled with calcium aluminate cement (EndoBinder), mineral trioxide aggregate (MTA), and calcium hydroxide. Methods After mixing, the cements were inserted into bone defects (3.3 mm) mechanically created in the right and left tibias of 30 rats (Rattus norvegicus, Wistar). In the control group, the bone defects were filled with blood clot of the animal itself. After time intervals of 7, 30, and 90 days had elapsed, bone tissue biopsies (n = 5) were surgically obtained and submitted to laboratory processing. The response of bone tissue in contact with the materials was microscopically analyzed. The percentage of neoformed bone tissue in the defect was determined by means of planimetry counting points superimposed on the histologic image. Results Significant increase in the percentage of neoformed bone tissue was observed throughout the experimental periods in all groups (P < .05). For the cements EndoBinder and MTA (30 and 90 days), these percentage values were statistically higher than those of the control group (P < .05); however, they were similar to those of calcium hydroxide (P > .05). Conclusions EndoBinder and MTA allowed complete repair of bone defects created in rat tibias.
Resumo:
Purpose: This study evaluated the effect of 10% sodium ascorbate (10SA), in gel (10SAg) or aqueous solution (10SAs) formulations, on fracture resistance of endodontically treated tooth submitted to dental bleaching procedures with 15% hydrogen peroxide associated with titanium dioxide (15HP-TiO2) nanoparticles and photoactivated by LED-laser. Material and methods: Forty maxillary premolars were endodontically-treated and embedded in acrylic resin up to the cement-enamel junction. The specimens were divided into four groups (n=10): G1 (negative control): no bleaching, coronal access restored with composite resin; G2 (positive control): three dental bleaching sessions using 15HP-TiO2 and LED-laser photoactivation and restored with composite resin (positive control); G3 (10SAg): similar procedures to G2, but applied 10SA, in gel formulation, for 24 hours before restoration; G4 (10SAs): similar procedures to G3, but applied 10SA, in aqueous solution formulation. The 15HP-TiO2 was applied on buccal and lingual surfaces of the crown tooth and inside the pulp chamber and photoactivated by LED-laser. Between each bleaching session, the teeth were maintained in artificial saliva, at 37oC, for 7 days. In sequence, the teeth were submitted to fracture resistance testing using an eletromechanical machine test. The data was analyzed using Kruskal Wallis test (p = 0.05) Results: There are no differences significant among the groups in relation to fracture resistance of endodontically treated teeth (p>0.05). Conclusions: The use of 10% sodium ascorbate, in gel or aqueous solution formulations, did not interfered on the fracture resistance teeth after dental bleaching using 15HP-TiO2 and LED-laser photoactivation.
Resumo:
The association between tridimensional scaffolds to cells of interest has provided excellent perspectives for obtaining viable complex tissues in vitro, such as skin, resulting in impressive advances in the field of tissue engineering applied to regenerative therapies. The use of multipotent mesenchymal stromal cells in the treatment of dermo-epidermal wounds is particularly promising due to several relevant properties of these cells, such as high capacity of proliferation in culture, potential of differentiation in multiple skin cell types, important paracrine and immunomodulatory effects, among others. Membranes of chitosan complexed with xanthan may be potentially useful as scaffolds for multipotent mesenchymal stromal cells, given that they present suitable physico-chemical characteristics and have adequate tridimensional structure for the adhesion, growth, and maintenance of cell function. Therefore, the purpose of this work was to assess the applicability of bioactive dressings associating dense and porous chitosan-xanthan membranes to multipotent mesenchymal stromal cells for the treatment of skin wounds. The membranes showed to be non-mutagenic and allowed efficient adhesion and proliferation of the mesenchymal stromal cells in vitro. In vivo assays performed with mesenchymal stromal cells grown on the surface of the dense membranes showed acceleration of wound healing in Wistar rats, thus indicating that the use of this cell-scaffold association for tissue engineering purposes is feasible and attractive.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this study was to evaluate the clinical survival rate of osseointegrated implants placed in the atrophic maxilla that has been reconstructed by means of autogenous bone grafts harvested from a cranial calvarial site. Further, we sought to analyse the level of pen-implant bone after prosthetic rehabilitation and to determine subjective patient satisfaction with the treatment performed. This study conformed to the STROBE guidelines regarding retrospective studies. Twenty-five patients who had received osseointegrated implants with late loading in the reconstructed atrophic maxilla were included in the study. The survival rate and level of pen-implant bone loss were evaluated. A questionnaire related to the surgical and prosthetic procedures was completed. The observed implant survival rate was 92.35%. The mean bone loss recorded was 1.76 mm in the maxilla and 1.54 mm in the mandible. The results of the questionnaire indicated a high level of patient satisfaction, little surgical discomfort, and that the patients would recommend the procedure and would undergo the treatment again. From the results obtained, it is concluded that the cranial calvarial site is an excellent donor area; calvarial grafts provided stability and maintenance of bone volume over the course of up to 11 years.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Diabetes interferes with bone formation and impairs fracture healing, an important complication in humans and animal models. The aim of this study was to examine the impact of diabetes on mesenchymal stem cells (MSCs) during fracture repair.Fracture of the long bones was induced in a streptozotocin-induced type 1 diabetic mouse model with or without insulin or a specific TNF alpha inhibitor, pegsunercept. MSCs were detected with cluster designation-271 (also known as p75 neurotrophin receptor) or stem cell antigen-1 (Sca-1) antibodies in areas of new endochondral bone formation in the calluses. MSC apoptosis was measured by TUNEL assay and proliferation was measured by Ki67 antibody. In vitro apoptosis and proliferation were examined in C3H10T1/2 and human-bone-marrow-derived MSCs following transfection with FOXO1 small interfering (si)RNA.Diabetes significantly increased TNF alpha levels and reduced MSC numbers in new bone area. MSC numbers were restored to normal levels with insulin or pegsunercept treatment. Inhibition of TNF alpha significantly reduced MSC loss by increasing MSC proliferation and decreasing MSC apoptosis in diabetic animals, but had no effect on MSCs in normoglycaemic animals. In vitro experiments established that TNF alpha alone was sufficient to induce apoptosis and inhibit proliferation of MSCs. Furthermore, silencing forkhead box protein O1 (FOXO1) prevented TNF alpha-induced MSC apoptosis and reduced proliferation by regulating apoptotic and cell cycle genes.Diabetes-enhanced TNF alpha significantly reduced MSC numbers in new bone areas during fracture healing. Mechanistically, diabetes-enhanced TNF alpha reduced MSC proliferation and increased MSC apoptosis. Reducing the activity of TNF alpha in vivo may help to preserve endogenous MSCs and maximise regenerative potential in diabetic patients.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
AimTo describe the sequential healing after elevation of the maxillary sinus mucosa applying the lateral access technique with the use of autogenous bone grafting without membrane to occlude the osteotomy access.Material and methodsImmediately after the elevation of the maxillary sinus Schneiderian membrane, applying the lateral access technique in 10 minipigs, autologous bone was harvested from the lateral aspect of the mandibular molar region and ground into particles with a bone mill. The space under the Schneiderian membrane was filled with this graft. No membranes were placed onto the access osteotomy. The healing was evaluated after 15, 30, 90 and 180days. Paraffin sections were prepared and analyzed histologically.ResultsAfter 15days of healing, the elevated area was mainly filled with provisional matrix, newly formed bone and some remnants of bone chips, and appeared reduced in volume compared with that at the time of surgery. After 30days of healing, further shrinkage of the height of the elevated space was found, with similar percentages of the different tissue components. After 90 and 180days, the area underneath the Schneiderian membrane appeared reduced in volume and condensed toward the base of the sinus. The bone tissues appeared to be more mature, both for the mineralized and the non-mineralized portions, while connective tissue occupied 20% of the space, most likely related to the lack of the use of a membrane occluding the access at the time of surgery.ConclusionsSuboptimal healing outcomes with respect to augmentation of the space under the sinus floor membrane were documented when autologous bone chips were used as a filler and no membrane was applied to cover the access.
Resumo:
Craniofacial trauma can lead to several complications. The combined fractures of anterior and posterior walls of the frontal bone are almost always followed by lesions in nasofrontal orifices and disruption of nasofrontal ostia or ducts, a significant factor for the development of early and late complications after sinus fractures. This article reports a case of trauma patient, who underwent neurological evaluation and at first showed good general condition. Computed tomography noted fracture of the anterior and posterior walls of the frontal sinus and small foci of pneumocephalus in the cerebral cortex. The patient was monitored periodically and 9 days after trauma showed increased areas of pneumocephalus in prefrontal cortex, cerebrospinal fluid draining, and large dura mater lesion, with signs of necrosis and inflammation (meningitis). The necrotic tissues were removed, and dura mater was repaired through the approximation with resorbable wire polyglactin 910 5-0, oxidized cellulose application, and bonding with human fibrin sealant (fibrinogen, thrombin, and calcium chloride). Sinusectomy, frontal sinus, and nasofrontal duct obliteration with pedicled pericranium flap were performed. Tomographically, a reanatomization was noted in frontal region, and a 12-month follow-up showed no complication. The use of fibrin glue to repair dura mater lacerations, as well as the pedicle pericranium flap for frontal sinus and nasofrontal duct obliteration, is an efficient method for treating fractures of the frontal bone.