967 resultados para Bond strenght
Resumo:
NH···π hydrogen bonds occur frequently between the amino acid side groups in proteins and peptides. Data-mining studies of protein crystals find that ~80% of the T-shaped histidine···aromatic contacts are CH···π, and only ~20% are NH···π interactions. We investigated the infrared (IR) and ultraviolet (UV) spectra of the supersonic-jet-cooled imidazole·benzene (Im·Bz) complex as a model for the NH···π interaction between histidine and phenylalanine. Ground- and excited-state dispersion-corrected density functional calculations and correlated methods (SCS-MP2 and SCS-CC2) predict that Im·Bz has a Cs-symmetric T-shaped minimum-energy structure with an NH···π hydrogen bond to the Bz ring; the NH bond is tilted 12° away from the Bz C₆ axis. IR depletion spectra support the T-shaped geometry: The NH stretch vibrational fundamental is red shifted by −73 cm⁻¹ relative to that of bare imidazole at 3518 cm⁻¹, indicating a moderately strong NH···π interaction. While the Sₒ(A1g) → S₁(B₂u) origin of benzene at 38 086 cm⁻¹ is forbidden in the gas phase, Im·Bz exhibits a moderately intense Sₒ → S₁ origin, which appears via the D₆h → Cs symmetry lowering of Bz by its interaction with imidazole. The NH···π ground-state hydrogen bond is strong, De=22.7 kJ/mol (1899 cm⁻¹). The combination of gas-phase UV and IR spectra confirms the theoretical predictions that the optimum Im·Bz geometry is T shaped and NH···π hydrogen bonded. We find no experimental evidence for a CH···π hydrogen-bonded ground-state isomer of Im·Bz. The optimum NH···π geometry of the Im·Bz complex is very different from the majority of the histidine·aromatic contact geometries found in protein database analyses, implying that the CH···π contacts observed in these searches do not arise from favorable binding interactions but merely from protein side-chain folding and crystal-packing constraints. The UV and IR spectra of the imidazole·(benzene)₂ cluster are observed via fragmentation into the Im·Bz+ mass channel. The spectra of Im·Bz and Im·Bz₂ are cleanly separable by IR hole burning. The UV spectrum of Im·Bz₂ exhibits two 000 bands corresponding to the Sₒ → S₁ excitations of the two inequivalent benzenes, which are symmetrically shifted by −86/+88 cm⁻¹ relative to the 000 band of benzene.
Resumo:
In this perspective article, we revise some of the empirical and semi-empirical strategies for predicting how hydrogen bonding affects molecular and atomic polarizabilities in aggregates. We use p-nitroaniline and hydrated oxalic acid as working examples to illustrate the enhancement of donor and acceptor functional-group polarizabilities and their anisotropy. This is significant for the evaluation of electrical susceptibilities in crystals; and the properties derived from them like the refractive indices.
Resumo:
The shells of marine mollusks are widely used archives of past climate and ocean chemistry. Whilst the measurement of mollusk delta 18O to develop records of past climate change is a commonly used approach, it has proven challenging to develop reliable independent paleothermometers that can be used to deconvolve the contributions of temperature and fluid composition on molluscan oxygen isotope compositions. Here we investigate the temperature dependence of 13C-18O bond abundance, denoted by the measured parameter Delta 47, in shell carbonates of bivalve mollusks and assess its potential to be a useful paleothermometer. We report measurements on cultured specimens spanning a range in water temperatures of 5 to 25 °C, and field collected specimens spanning a range of -1 to 29 °C. In addition we investigate the potential influence of carbonate saturation state on bivalve stable isotope compositions by making measurements on both calcitic and aragonitic specimens that have been cultured in seawater that is either supersaturated or undersaturated with respect to aragonite. We find a robust relationship between Delta 47 and growth temperature. We also find that the slope of a linear regression through all the Delta 47 data for bivalves plotted against seawater temperature is significantly shallower than previously published inorganic and biogenic carbonate calibration studies produced in our laboratory and go on to discuss the possible sources of this difference. We find that changing seawater saturation state does not have significant effect on the Delta 47 of bivalve shell carbonate in two taxa that we examined, and we do not observe significant differences between Delta 47-temperature relationships between calcitic and aragonitic taxa.
Resumo:
A number of thrombectomy devices using a variety of methods have now been developed to facilitate clot removal. We present research involving one such experimental device recently developed in the UK, called a ‘GP’ Thrombus Aspiration Device (GPTAD). This device has the potential to bring about the extraction of a thrombus. Although the device is at a relatively early stage of development, the results look encouraging. In this work, we present an analysis and modeling of the GPTAD by means of the bond graph technique; it seems to be a highly effective method of simulating the device under a variety of conditions. Such modeling is useful in optimizing the GPTAD and predicting the result of clot extraction. The aim of this simulation model is to obtain the minimum pressure necessary to extract the clot and to verify that both the pressure and the time required to complete the clot extraction are realistic for use in clinical situations, and are consistent with any experimentally obtained data. We therefore consider aspects of rheology and mechanics in our modeling.
Resumo:
This paper presents an analytical model for simulating the bond between steel and concrete, in precast prestressed concrete elements, during the prestressing force release. The model establishes a relationship between bond stress, steel and concrete stress and slip in such concrete structures. This relationship allows us to evaluate the bond stress in the transmission zone, where bond stress is not constant, along the whole prestressing force release process. The model is validated with the results of a series of tests and is extended to evaluate the transmission length. This capability has been checked by comparing the transmission length predicted by the model and one measured experimentally in a series of tests.
Resumo:
One of the most used methods in rapidprototyping is Fused Deposition Modeling (FDM), which provides components with a reasonable strength in plastic materials such as ABS and has a low environmental impact. However, the FDM process exhibits low levels of surface finishing, difficulty in getting complex and/or small geometries and low consistency in “slim” elements of the parts. Furthermore, “cantilever” elements need large material structures to be supported. The solution of these deficiencies requires a comprehensive review of the three-dimensional part design to enhance advantages and performances of FDM and reduce their constraints. As a key feature of this redesign a novel method of construction by assembling parts with structuraladhesive joints is proposed. These adhesive joints should be designed specifically to fit the plastic substrate and the FDM manufacturing technology. To achieve this, the most suitable structuraladhesiveselection is firstly required. Therefore, the present work analyzes five different families of adhesives (cyanoacrylate, polyurethane, epoxy, acrylic and silicone), and, by means of the application of technical multi-criteria decision analysis based on the analytic hierarchy process (AHP), to select the structuraladhesive that better conjugates mechanical benefits and adaptation to the FDM manufacturing process
Resumo:
This paper presents an analytical model for simulating the bond between steel and concrete, in precast prestressed concrete elements, during the prestressing force release. The model establishes a relationship between bond stress, steel and concrete stress and slip in such concrete structures. This relationship allows us to evaluate the bond stress in the transmission zone, where bond stress is not constant, along the whole prestressing force release process. The model is validated with the results of a series of tests, considering different steel indentation depths and concrete covers and is extended to evaluate the transmission length. This capability has been checked by comparing the transmission length predicted by the model and one measured experimentally in two series of tests.
Resumo:
This paper presents two test procedures for evaluating the bond stress–slip and the slip–radial dilation relationships when the prestressing force is transmitted by releasing the steel (wire or strand) in precast prestressed elements. The bond stress–slip relationship is obtained with short length specimens, to guarantee uniform bond stress, for three depths of the wire indentation (shallow, medium and deep). An analytical model for bond stress–slip relationship is proposed and compared with the experimental results. The model is also compared with the experimental results of other researchers. Since numerical models for studying bond-splitting problems in prestressed concrete require experimental data about dilatancy angle (radial dilation), a test procedure is proposed to evaluate these parameters. The obtained values of the radial dilation are compared with the prior estimated by numerical modelling and good agreement is reached
Resumo:
La Unión Europea acaba de lanzar una iniciativa para fomentar Participaciones Público Privadas (PPPs) mediante bonos de proyecto más atractivos a inversores institucionales para promover proyectos transeuropeos. Esto se logra a través de mecanismos de mejora crediticia como garantías de liquidez o tramos de deuda subordinada facilitados por el Banco Europeo de Inversiones. Esta iniciativa pretende evitar los problemas de liquidez experimentados actualmente por bancos comerciales en Europa para financiar megaproyectos. En este artículo exploramos las ventajas e inconvenientes de esta iniciativa para promover redes de infraestructuras transnacionales en Europa, y analizamos su aplicabilidad a otras áreas como Latino-América. The European Union recently launched an initiative to foster Public Private Partnerships (PPPs) for delivering Trans-European projects by making long-term project-bonds more appealing to institutional investors. This is achieved through credit-enhancement mechanisms such as partial stand-by liquidity guarantees, or layers of subordinated debt provided by the European Investment Bank. This initiative intends to circumvent the liquidity problems currently endured by commercial banks in Europe to fund megaprojects. In this paper we explore the advantages and drawbacks of this initiative for promoting transnational infrastructure networks in Europe, and analyse its applicability to other economic areas such as Latin America.