998 resultados para Bolshoe Eravnoe Lake, Russia
Resumo:
Feeding and growth traits of Cyprinus carpio and Cyprinus pellegrini (both at age-0) were compared in three experiment, in an attempt to analyze potential causes for the displacement of the native C. pellegrini in the Xingyun Lake, Yuxi, Yunan, China. Experiment I was conducted in water which fluctuated between 15 and 20 degrees C. Experiment II and III were conducted in a laboratory and water temperature was maintained between 20 degrees C and 25 degrees C, respectively. Three common trends were noted for all three experiments: (1) feeding rate of C. carpio was lower than that of C. pellegrini, and this difference was found to be significant in experiment I; (2) growth rate of C. carpio was higher than C. pellegrini, and the difference was found to be significant in experiment II; (3) food conversion efficiency and energy retention efficiency for C. carpio were higher than those of C. pellegrini, and significant differences were noted in experiment I and II. Since the growth period for fish in the Xingyun Lake generally occurs when water temperatures are between 15 and 25 degrees C, it can be suggested that C. carpio has advantages over C. pellegrini in growth and food utilization efficiency, and lower food consumption than C. pellegrini. These physiological traits of C. carpio might allow this species to be more resistant to food shortage and predation, and may be partially responsible for the displacement of C. pellegrini by C. carpio.
Resumo:
Spatial, vertical, and seasonal variations in phosphorus fractions and in alkaline phosphatase activity (APA) were investigated in sediments in a large-shallow eutrophic Chinese lake (Lake Taihu) in 2003-2004. The phosphorus content was highest in the most seriously polluted lake area. Iron-bound phosphorus (Fe(OOH)-P) dominated (47% on average) among the phosphorus fractions determined according to Golterman (Hydrobiologia 335:87-95, 1996). Notably, organically-bound P comprised a further significant additional portion (acid-soluble + hot NaOH-extractable organic P = 25%), which was highest at the most polluted sites. The Fe(OOH)-P content was the lowest in spring (April, 2004), suggesting that degradation of organic matter led to the release of iron-bound phosphates. Sediment APA showed a significant positive relationship with both organically-bound P and Fe(OOH)-P. Consequently, organically-bound P is an important portion of the sediment phosphorus in Lake Taihu. It is mainly derived from freshly-settled autochthonous particles and from external discharges. Organically-bound P induces APA and may lead to the release of bioavailable phosphates from the organic sediments, thereby accelerating lake eutrophication.
Resumo:
The 16S and 18S rRNA genes of planktonic organisms derived from five stations with nutrient gradients in Lake Donghu, China, were studied by PCR-denaturing gradient gel electrophoresis (DGGE) fingerprinting, and the relationships between the genetic diversity of the plankton community and biotic/abiotic factors are discussed. The concentrations of total nitrogen (TN), total phosphorus (TP), NH4-N and As were found to be significantly related (P < 0.05) to morphological composition of the plankton community. Both chemical and morphological analyses suggested that temporal heterogeneity was comparatively higher than spatial heterogeneity in Lake Donghu. Although the morphological composition was not identical to the DGGE fingerprints in characterizing habitat similarity, the two strongest eutrophic stations (I and II) were always initially grouped into one cluster. Canonical correspondence analysis suggested that the factors strongly correlated with the first two ordination axes were seasonally different. The concentrations of TN and TP and the densities of rotifers and crustaceans were generally the main factors related to the DGGE patterns of the plankton communities. The study suggested that genetic diversity as depicted by metagenomic techniques (such as PCR-DGGE fingerprinting) is a promising tool for ecological study of plankton communities and that such techniques are likely to play an increasingly important role in assessing the environmental conditions of aquatic habitats.
Resumo:
The sediment redox potential was raised in the laboratory to estimate reduction of internal available phosphorus loads, such as soluble reactive phosphorus (SRP) and total phosphorus (TP), as well as the main elements of sediment extracts in Dianchi Lake. Several strongly reducing substances in sediments, which mainly originated from anaerobic decomposition of primary producer residues, were responsible for the lower redox potential. In a range of -400 to 200 mV raising the redox potential of sediments decreased TP and SRP in interstitial water. Redox potentials exceeding 320 mV caused increases in TP, whereas SRP maintained a relatively constant minimum level. The concentrations of Al, Fe, Ca2+, Mg2+, K+, Na+ and S in interstitial water were also related to the redox potential of sediments, suggesting that the mechanism for redox potential to regulate the concentration of phosphorus in interstitial water was complex.
Resumo:
Investigations of protozoa were carried out during four surveys of East Dongting Lake, China. A total of 160 protozoan species belonging to 71 genera was identified, of which 53 were flagellates, 37 sarcodines, and 70 ciliates. Among them, Peritrichida (32.6% of frequency), Arcellinida (16.2%), Volvocales (13.61/6), Peridiniales (13.1%), and Chrysomonadales (9.1%) were the main groups and contributed to 84.5% of the overall species. Ciliates were mainly composed of sessile species and small species. The total protozoan abundance varied from 2,400 cells L-1 to 20,250 cells L-1. The highest protozoan abundance occurred in spring; the lowest number was in autumn. The highest abundance of ciliates occurred in spring and winter, whereas flagellates developed the highest abundance in,summer and autumn. Pearson correlation analysis and linear regressions indicated that chlorophyll a and water velocity were the main factors affecting ternporal and spatial variations of the protozoan abundance.
Resumo:
Lake Dianchi is a shallow and turbid lake, located in Southwest China. Since 1985, Lake Dianchi has experienced severe cyanabacterial blooms (dominated by Microcystis spp.). In extreme cases, the algal cell densities have exceeded three billion cells per liter. To predict and elucidate the population dynamics ofMicrocystis spp. in Lake Dianchi, a neural network based model was developed. The correlation coefficient (R 2) between the predicted algal concentrations by the model and the observed values was 0.911. Sensitivity analysis was performed to clarify the algal dynamics to the changes of environmental factors. The results of a sensitivity analysis of the neural network model suggested that small increases in pH could cause significantly reduced algal abundance. Further investigations on raw data showed that the response of Microcystis spp. concentration to pH increase was dependent on algal biomass and pH level. When Microcystis spp. population and pH were moderate or low, the response of Microcystis spp. population would be more likely to be positive in Lake Dianchi; contrarily, Microcystis spp. population in Lake Dianchi would be more likely to show negative response to pH increase when Microcystis spp. population and pH were high. The paper concluded that the extremely high concentration of algal population and high pH could explain the distinctive response of Microcystis spp. population to +1 SD (standard deviation) pH increase in Lake Dianchi. And the paper also elucidated the algal dynamics to changes of other environmental factors. One SD increase of water temperature (WT) had strongest positive relationship with Microcystis spp. biomass. Chemical oxygen demand (COD) and total phosphorus (TP) had strong positive effect on Microcystis spp. abundance while total nitrogen (TN), biological oxygen demand in five days (BOD5), and dissolved oxygen had only weak relationship with Microcystis spp. concentration. And transparency (Tr) had moderate positive relationship with Microcystis spp. concentration.
Resumo:
Ten common species of Microcystis, based on the examination of water samples from the Dianchi Lake, Yunnan, China, were morphologically described, and their taxonomy was also discussed. They are Microcystis aeruginosa, M botrys, M firma, M flos-aquae, M ichthyoblabe, M novacekii, M pseudofilamentosa, M smithii, M viridis and M wesenbergii. Taxonomic status of other Microcystis species reported in China was also evaluated.
Resumo:
To collect information about the genetic diversity of the plankton community and to study how plankton respond to environmental conditions, plankton samples were collected from five stations representing different trophic levels in a shallow, eutrophic lake (Lake Donghu), and investigated by PCR-DGGE fingerprinting. A total of 100 bands (61 of 16S rDNA bands and 39 of 18S rDNA bands) were detected. The DGGE bands unique to any single station accounted for 38% of the total bands, whereas common bands detected at all five stations accounted for only 11%. Using UPGMA clustering and MDS ordination of DGGE fingerprints, stations I and II were found to initially group together into one cluster, which was later joined by station V. Stations III and IV were isolated into two separate groups of one station each. Some differences in grouping relationships were found when analysis was completed on the basis of chemical characteristics and morphological composition, with zooplankton composition showing the greatest variability. However, the most similar stations (I and II) were always initially grouped into one cluster. Moreover, stations that exhibited the same or similar trophic level (stations III and IV), but different concentrations of heavy metals, were further differentiated by the DGGE method. Results of the present study indicated that PCR-DGGE fingerprinting was more sensitive than the traditional methods, as other studies suggested. Additionally, PCR-DGGE appears to be more appropriate for diversity characterization of the plankton community, as it is more canonical, systematic, and effective. Most importantly, fingerprinting results are more convenient for the comparative analyses between different studies. Therefore, the use of the described fingerprinting analysis may provide an operable and sensitive biomonitoring approach to identify critical, and potentially negative, stress within an aquatic ecosystem.
Resumo:
Metal contents of surface sediments were analyzed temporally and spatially in Lake Chaohu, China. No obvious temporal variations were observed, which probably due to physio- and bio- mixing, e.g. wind and microbes, in this lake. Enrichment factor of some metals were generally greater than 1.0, suggesting significant anthropogenic impact on metal levels. Significantly positive correlations between concentrations of nutrient and metals indicated that the nutrients transported to this lake contributed, to some extent, to the enrichment of metals. The correlation between trace metals concentrations indicated the co-contamination of anthropogenically derived metal enrichment in surface sediment of Lake Chaohu.
Resumo:
Physiological and biochemical responses of four fishes with different trophic levels to toxic cyanobacterial blooms were studied in a large net cage in Meiliang Bay, a hypereutrophic region of Lake Taihu. We sampled four fishes: the phytoplanktivorous Hypophthalmichthys molitrix and Aristichthys nobilis, the omnivorous Carassius auratus, and the carnivorous Culter ilishaeformis. Alterations of the antioxidant (GSH) and the major antioxidant enzymes (CAT, SOD, GPx, GST) in livers were monitored monthly, and the ultrastructures of livers were compared between the bloom and post-bloom periods. During the cyanobacterial blooms, the phytoplanktivorous fishes displayed only slight ultrastructural changes in liver, while the carnivorous fish presented the most serious injury as swollen endomembrane system and morphologically altered nuclei in hepatocytes. Biochemically, the phytoplanktivorous fishes possessed higher basal GSH concentrations and better correlations between the major antioxidant enzymes in liver, which might be responsible for their powerful resistance to MCs. This article provided physiological and toxicological evidences for the possible succession of fish communities following occurrence of toxic cyanobacterial blooms and also for the applicability of using phytoplanktivorous fish to counteract toxic cyanobacterial blooms in natural waters. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
We studied diet composition and overlap of the exotic noodlefish (Neosalanx taihuensis) and the endemic fish Anaborilius grahami in a deep, oligotrophic lake in the Yunnan Plateau. A. grahami dominated the fish community in Lake Fuxian before the invasion of N. taihuensis in 1982, but it is now in the process of extinction, corresponding with an explosive increase in N. taihuensis population. Schoener's index (alpha=0.773) indicate that N. taihuensis and A. grahami have significant diet overlap, with both fish feeding mainly on zooplankton. An increased proportion of littoral prey, such as Procladius spp., Coleoptera, and epiphytes, in the diet of A. grahami indicated that this endemic fish shifted its main habitat from the off-shore zone in the late 1980s to the littoral zone at the present. A difference in reproduction between the two fishes, along with the overfishing, may have exacerbated the occupation of A. grahami's pelagic niche by N. taihuensis. The endemic species has shown large competitive disadvantage for food and space in the presence of N. taihuensis.
Resumo:
In this paper, the adsorption equilibrium and kinetic behaviors of pentachlorophenol (PCP) on suspended particulate matter (SPM) in Donghu Lake water were investigated. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and their constants were evaluated. The results indicated that the adsorption of PCP on Donghu Lake SPM followed the Freundlich isotherm. Furthermore, the first order Lagergren rate equation and the pseudo-second order rate equation were used to describe the kinetic behaviors of PCP adsorption on Donghu Lake SPM, the rate constants were determined, and the kinetic process of the adsorption of PCP on Donghu Lake SPM followed the second order kinetic model.
Resumo:
Phosphorus removal performance and a possible mechanism for the phosphorus removal from an eutrophic lake water were investigated using a medium-scale integrated vertical constructed wetland (combined vertical and reverse-vertical systems) from April, 11, 2001 to September, 28, 2004. Environmental factors affecting phosphorus removal and release profiles were monitored simultaneously under hydraulic loads from 400 to 2000 mm per day. The phosphorus removal rate varied with the environmental conditions. The removal rate for acidic influent water was superior to that for alkaline influent water. The substrate in the wetland chamber acted as a buffer to regulate the pH value of the water sample. As regards the water temperature, no significant differences were observed for the removal rate of total phosphorus (TP) and soluble reactive phosphorus (SRP) between low (lower than 15 degrees C) medium (16-25 degrees C) and high temperature (higher than 26 degrees C) conditions. Under a hydraulic load of 400 mm per day, the removal rate reached over 70%, the highest value achieved in this work. In addition, the highest hydraulic load of 2000 mm/d did not result in the lowest removal rate, as had been expected. After a two-year high hydraulic load test, the removal rate decreased significantly. Phosphorous release from the substrate was examined using a spatial sampling method. Depth profiles of total phosphorus and different states of phosphorus present in the substrate were recorded. This further study demonstrated that binding of phosphorus by iron and calcium might be another major factor in the removal and release of TP and SRP in this wetland system. The distribution of the speciated phosphorus showed that the amount of phosphorus captured in the substrate of the down-flow chamber was significantly higher than that captured in the up-flow chamber, suggesting that the up-flow chamber was the main source of phosphorus release in this constructed wetland.
Resumo:
Lake Dianchi is one of the most extensively impacted freshwater lakes by algal blooms. To investigate the response of dominant algal genera, neural networks were applied to model the relationship between water quality parameters and the biomass of four dominant genera (Microcystic spp., Anabaena sp., Quadricauda (Turp.) Breb, Pediastrum Mey) in Dianchi. Results showed that the timing and magnitude of algal blooms of Microcystic spp., nabaena sp., Quadricauda (Turp.) Breb, and Pediastrum Mey in Dianchi could be successfully predicted. The evaluation of environmental factors showed that pH had more significant impact on concentrations of all the four dominant algal genera than the nutrient factors, such as total phosphorus and total nitrogen.