874 resultados para Blumlein stack line
Resumo:
We obtain the behaviour of the critical (possibly tricritical) point for metamagnetic Ni(NO3)2·2H2O as a function of several applied hydrostatic pressures up to 11 kbar. The obtained line of possible tricritical points greatly suggests a pressure induced metamagnetic transition in a 0.8 kbar range. © 1987.
Resumo:
Wind-excited vibrations in the frequency range of 10 to 50 Hz due to vortex shedding often cause fatigue failures in the cables of overhead transmission lines. Damping devices, such as the Stockbridge dampers, have been in use for a long time for supressing these vibrations. The dampers are conveniently modelled by means of their driving point impedance, measured in the lab over the frequency range under consideration. The cables can be modelled as strings with additional small bending stiffness. The main problem in modelling the vibrations does however lay in the aerodynamic forces, which usually are approximated by the forces acting on a rigid cylinder in planar flow. In the present paper, the wind forces are represented by stochastic processes with arbitrary crosscorrelation in space; the case of a Kármán vortex street on a rigid cylinder in planar flow is contained as a limit case in this approach. The authors believe that this new view of the problem may yield useful results, particularly also concerning the reliability of the lines and the probability of fatigue damages. © 1987.
Resumo:
The Ritz computer program, developed for facilitating the assignment of molecular Fourier transform absorption spectra and described in a previous work, determines the energy level values involved in the assigned transitions by the Rydberg-Ritz combination principle. Combining the data obtained from the analyses of high-resolution infrared (IR) and far-infrared (FIR) spectra, it is possible to predict possible FIR laser emissions of molecules. In the present work we have applied this method to the common isotopomer methanol, 12CH3 16OH, and obtained 14 proposed assignments for previously unassigned FIR laser lines. We also predict 15 possible new FIR laser emissions. For the first time, an assignment involving a four-level laser system with collisional population transfer to a slightly higher energy level is reported. © 1998 Academic Press.
Resumo:
The aim of this work is to propose a flow spectrophotometric procedure for manganese determination in steel based on electrochemical oxidation of Mn(II) to Mn(VII) at a Pt electrode surface by means of the catalytic effect of Ag(I). The on-line oxidation step was obtained by injecting sample and electrolyte solution directly into an electrolytic cell. After electrolysis, the injectate was homogenized by bubbling air. The permanganate ions produced were passed through the spectrophotometer where absorbance was monitored at 545 nm. Effects of direct current, silver concentration, timing, flow rates, concentration and composition of support electrolyte were investigated. Direct current and silver content manifested themselves as the most relevant parameters. For determination of manganese in the 5.00 - 150 mg L -1 range (r=0,9998) and 60 s electrolysis time, the sample throughput was 20 h -1. Accuracy was assessed by analyzing ten steel standard reference materials. Results are precise (R.S.D. <3%) and in agreement with certified values of reference materials and with standard methods at 95% confidence level.
Resumo:
Objectives: Evaluate the cytotoxic effect of the three dental adhesive systems. Methods: The immortalized mouse odontoblast cell line (MDPC-23) was plated (30,000 cell/cm 2) in 24 well dishes, allowed to grow for 72 h, and counted under inverted light microscopy. Uncured fresh adhesives were added to culture medium to simulate effects of unset adhesive. Three adhesives systems were applied for 120 min to cells in six wells for each group: Group 1) Single Bond (3M), Group 2) Prime & Bond 2.1 (Dentsply), and Group 3) Syntac Sprint (Vivadent). In the control group, PBS was added to fresh medium. The cell number was counted again and the cell morphology was assessed under SEM. In addition, the adhesive systems were applied to circles of filter paper, light-cured for 20 s, and placed in the bottom of 24 wells (six wells for each experimental materials and control group). MDPC-23 cells were plated (30,000 cell/cm 2) in the wells and allowed to incubate for 72 h. The zone of inhibition around the filter papers was measured under inverted light microscopy; cell morphology was evaluated under SEM; and the MTT assay was performed for mitochondrial respiration. Results: The fresh adhesives exhibited more toxic (cytopathic effects) to MDPC-23 cells than polymerized adhesives on filter papers, and as compared to the control group. The cytopathic effect of the adhesive systems occurred in the inhibition zone around the filter papers, which was confirmed by the MTT assay and statistical analysis (ANOVA) combined with Fisher's PLSD test. In the control group, MDPC-23 cells were dense on the plastic substrate and were in contact with the filter paper. In the experimental groups, when acid in the adhesive systems was removed by changing the culture medium, or when the adhesives were light-cured, some cells grew in the wells in spite of the persistent cytotoxic effect. Significance: All dentin adhesive systems were cytotoxic odontoblast-like cells. Both acidity and non-acidic components of these systems were responsible for the high cytopathic effect of those dental materials. © 1999 Academy of Dental Materials. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
In this work we analyze the relation between the interface microroughness and the full width at half maximum (FWHM) of the photoluminescence (PL) spectra for a GaAs/Ga0.7Al0.3As multiple quantum well (QW) system. We show that, in spite of the complex correlation between the microscopic interface-defects parameters and the QW optical properties, the Singh and Bajaj model [Appl. Phys. Lett. 44, 805 (1984)] provides a good quantitative description of the excitonic PL-FWHM. ©1999 The American Physical Society.
Resumo:
The problem of dynamic camera calibration considering moving objects in close range environments using straight lines as references is addressed. A mathematical model for the correspondence of a straight line in the object and image spaces is discussed. This model is based on the equivalence between the vector normal to the interpretation plane in the image space and the vector normal to the rotated interpretation plane in the object space. In order to solve the dynamic camera calibration, Kalman Filtering is applied; an iterative process based on the recursive property of the Kalman Filter is defined, using the sequentially estimated camera orientation parameters to feedback the feature extraction process in the image. For the dynamic case, e.g. an image sequence of a moving object, a state prediction and a covariance matrix for the next instant is obtained using the available estimates and the system model. Filtered state estimates can be computed from these predicted estimates using the Kalman Filtering approach and based on the system model parameters with good quality, for each instant of an image sequence. The proposed approach was tested with simulated and real data. Experiments with real data were carried out in a controlled environment, considering a sequence of images of a moving cube in a linear trajectory over a flat surface.
Resumo:
The application of on-line C30-reversed-phase high-pressure liquid chromatography-nuclear magnetic resonance spectroscopy is described for the analysis of tetraglycosylated flavonoids in aqueous and hydroalcoholic extracts of the leaves of Maytenus aquifolium (Celastraceae). Triacontyl stationary phases showed adequate separation for on-line 1H-NMR measurements at 600 MHz and allowed the characterisation of these flavonoids by detection of both aromatic and anomeric proton signals. Copyright (C) 2000 John Wiley and Sons, Ltd.
Resumo:
Here we present two-phase flow nonlinear parameter estimation for HFC's flow through capillary tube-suction line heat exchangers, commonly used as expansion devices in small refrigeration systems. The simplifying assumptions adopted are: steady state, pure refrigerant, one-dimensional flow, negligible axial heat conduction in the fluid, capillary tube and suction line walls. Additionally, it is considered that the refrigerant is free from oil and both phases are assumed to be at the same pressure, that is, surface tension effects are neglected. Metastable flow effects are also disregarded, and the vapor is assumed to be saturated at the local pressure. The so-called homogeneous model, involving three, first order, ordinary differential equations is applied to analyze the two-phase flow region. Comparison is done with experimental measurements of the mass flow rate and temperature distribution along capillary tubes working with refrigerant HFC-134a in different operating conditions.
Resumo:
A rapid and sensitive method was developed to determine trace levels of Cd2+ ions in an aqueous medium by flame atomic absorption spectrometry, using on-line preconcentration in a mini-column packed with 100 mg of 2-aminothiazol modified silica gel (SiAT). The Cd2+ ions were sorbed at pH 5.0. The preconcentrated Cd2+ ions were directly eluted from the column to the spectrometer's nebulizer-burner system using 100 μL of 2 mol L-1 hydrochloric acid. A retention efficiency of over 95% was achieved. The enrichment factor (calculated as the ratio of slopes of the calibration graphs) obtained with preconcentrations in a mini-column packed with SiAT (A = -1.3 × 10-3 + 1.8 × 10-3 [Cd2+]) and without preconcentrations (A = 4 × 10-5 + 3.5 × 10-3[Cd2+]), was 51 and the detection limit calculated was 0.38 μg L-1. The preconcentration procedure was applied to determine trace levels of Cd in river water samples. The optimum preconcentration conditions are discussed herein.
Resumo:
Three-phase three-wire power flow algorithms, as any tool for power systems analysis, require reliable impedances and models in order to obtain accurate results. Kron's reduction procedure, which embeds neutral wire influence into phase wires, has shown good results when three-phase three-wire power flow algorithms based on current summation method were used. However, Kron's reduction can harm reliabilities of some algorithms whose iterative processes need loss calculation (power summation method). In this work, three three-phase three-wire power flow algorithms based on power summation method, will be compared with a three-phase four-wire approach based on backward-forward technique and current summation. Two four-wire unbalanced medium-voltage distribution networks will be analyzed and results will be presented and discussed. © 2004 IEEE.
Resumo:
The objective of this paper is to show an alternative methodology to calculate transmission line parameters per unit length. With this methodology the transmission line parameters can be obtained starting from the phase currents and voltages in one terminal of the line. First, the article shows the classical methodology to calculate frequency dependent transmission line parameters by using Carson's and Pollaczeck's equations for representing the ground effect and Bessel's functions to represent the skin effect. After that, it is shown a new procedure to calculate frequency dependent transmission line parameters directly from currents and voltages of the line that is already built. Then, this procedure is applied in a two-phase transmission line whose parameters have been previously calculated by using the classical methodology. Finally, the results obtained by using the new procedure and by using the classical methodology are compared. ©2005 IEEE.
Resumo:
In transmission line transient analyses, a single real transformation matrix can obtain exact modes when the analyzed line is transposed. For non-transposed lines, the results are not exact. In this paper, non-symmetrical and non transposed three-phase line samples are analyzed with a single real transformation matrix application (Clarke's matrix). Some interesting characteristics of this matrix application are: single, real, frequency independent, line parameter independent, identical for voltage and current determination. With Clarke's matrix use, mathematical simplifications are obtained and the developed model can be applied directly in programs based on time domain. This model works without convolution procedures to deal with phase-mode transformation. In EMTP programs, Clarke's matrix can be represented by ideal transformers and the frequency dependent line parameters can be represented by modified-circuits. With these representations, the electrical values at any line point can be accessed for phase domain or mode domain using the Clarke matrix or its inverse matrix. For symmetrical and non-transposed lines, the model originates quite small errors. In addition, the application of the proposed model to the non-symmetrical and non-transposed three phase transmission lines is investigated. ©2005 IEEE.