971 resultados para Block-belt dynamical systems
Resumo:
We demonstrate the existence of generalized synchronization in systems that act as mediators between two dynamical units that, in turn, show complete synchronization with each other. These are the so-called relay systems. Specifically, we analyze the Lyapunov spectrum of the full system to elucidate when complete and generalized synchronization appear. We show that once a critical coupling strength is achieved, complete synchronization emerges between the systems to be synchronized, and at the same point, generalized synchronization with the relay system also arises. Next, we use two nonlinear measures based on the distance between phase-space neighbors to quantify the generalized synchronization in discretized time series. Finally, we experimentally show the robustness of the phenomenon and of the theoretical tools here proposed to characterize it.
Resumo:
Division of labor is a widely studied aspect of colony behavior of social insects. Division of labor models indicate how individuals distribute themselves in order to perform different tasks simultaneously. However, models that study division of labor from a dynamical system point of view cannot be found in the literature. In this paper, we define a division of labor model as a discrete-time dynamical system, in order to study the equilibrium points and their properties related to convergence and stability. By making use of this analytical model, an adaptive algorithm based on division of labor can be designed to satisfy dynamic criteria. In this way, we have designed and tested an algorithm that varies the response thresholds in order to modify the dynamic behavior of the system. This behavior modification allows the system to adapt to specific environmental and collective situations, making the algorithm a good candidate for distributed control applications. The variable threshold algorithm is based on specialization mechanisms. It is able to achieve an asymptotically stable behavior of the system in different environments and independently of the number of individuals. The algorithm has been successfully tested under several initial conditions and number of individuals.
Resumo:
This paper shows the importance of a holistic comprehension of the Earth as a living planet, where man inhabits and is exposed to environmental incidences of different nature. The aim of the paper here summarized is a reflection on all these concepts and scientific considerations related to the important role of men in the handling of natural hazards. Our Planet is an unstable and dynamical system highly sensitive to initial conditions, as proposed by Chaos theory (González-Miranda 2004); it is a complex organic whole, which responds to minimal variations which can affect several natural phenomena such as plate tectonics, solar flares, fluid turbulences, landscape formation, forest fires, growth and migration of populations and biological evolution. This is known as the “butterfly effect” (Lorenz 1972), which means that a small change of the system causes a chain of events leading to large-scale unpredictable consequences. The aim of this work is dwelling on the importance of the knowledge of these natural and catastrophic geological, biological and human systems so much sensible to equilibrium conditions, to prevent, avoid and mend their effects, and to face them in a resilient way
Resumo:
La diabetes comprende un conjunto de enfermedades metabólicas que se caracterizan por concentraciones de glucosa en sangre anormalmente altas. En el caso de la diabetes tipo 1 (T1D, por sus siglas en inglés), esta situación es debida a una ausencia total de secreción endógena de insulina, lo que impide a la mayoría de tejidos usar la glucosa. En tales circunstancias, se hace necesario el suministro exógeno de insulina para preservar la vida del paciente; no obstante, siempre con la precaución de evitar caídas agudas de la glucemia por debajo de los niveles recomendados de seguridad. Además de la administración de insulina, las ingestas y la actividad física son factores fundamentales que influyen en la homeostasis de la glucosa. En consecuencia, una gestión apropiada de la T1D debería incorporar estos dos fenómenos fisiológicos, en base a una identificación y un modelado apropiado de los mismos y de sus sorrespondientes efectos en el balance glucosa-insulina. En particular, los sistemas de páncreas artificial –ideados para llevar a cabo un control automático de los niveles de glucemia del paciente– podrían beneficiarse de la integración de esta clase de información. La primera parte de esta tesis doctoral cubre la caracterización del efecto agudo de la actividad física en los perfiles de glucosa. Con este objetivo se ha llevado a cabo una revisión sistemática de la literatura y meta-análisis que determinen las respuestas ante varias modalidades de ejercicio para pacientes con T1D, abordando esta caracterización mediante unas magnitudes que cuantifican las tasas de cambio en la glucemia a lo largo del tiempo. Por otro lado, una identificación fiable de los periodos con actividad física es un requisito imprescindible para poder proveer de esa información a los sistemas de páncreas artificial en condiciones libres y ambulatorias. Por esta razón, la segunda parte de esta tesis está enfocada a la propuesta y evaluación de un sistema automático diseñado para reconocer periodos de actividad física, clasificando su nivel de intensidad (ligera, moderada o vigorosa); así como, en el caso de periodos vigorosos, identificando también la modalidad de ejercicio (aeróbica, mixta o de fuerza). En este sentido, ambos aspectos tienen una influencia específica en el mecanismo metabólico que suministra la energía para llevar a cabo el ejercicio y, por tanto, en las respuestas glucémicas en T1D. En este trabajo se aplican varias combinaciones de técnicas de aprendizaje máquina y reconocimiento de patrones sobre la fusión multimodal de señales de acelerometría y ritmo cardíaco, las cuales describen tanto aspectos mecánicos del movimiento como la respuesta fisiológica del sistema cardiovascular ante el ejercicio. Después del reconocimiento de patrones se incorpora también un módulo de filtrado temporal para sacar partido a la considerable coherencia temporal presente en los datos, una redundancia que se origina en el hecho de que en la práctica, las tendencias en cuanto a actividad física suelen mantenerse estables a lo largo de cierto tiempo, sin fluctuaciones rápidas y repetitivas. El tercer bloque de esta tesis doctoral aborda el tema de las ingestas en el ámbito de la T1D. En concreto, se propone una serie de modelos compartimentales y se evalúan éstos en función de su capacidad para describir matemáticamente el efecto remoto de las concetraciones plasmáticas de insulina exógena sobre las tasas de eleiminación de la glucosa atribuible a la ingesta; un aspecto hasta ahora no incorporado en los principales modelos de paciente para T1D existentes en la literatura. Los datos aquí utilizados se obtuvieron gracias a un experimento realizado por el Institute of Metabolic Science (Universidad de Cambridge, Reino Unido) con 16 pacientes jóvenes. En el experimento, de tipo ‘clamp’ con objetivo variable, se replicaron los perfiles individuales de glucosa, según lo observado durante una visita preliminar tras la ingesta de una cena con o bien alta carga glucémica, o bien baja. Los seis modelos mecanísticos evaluados constaban de: a) submodelos de doble compartimento para las masas de trazadores de glucosa, b) un submodelo de único compartimento para reflejar el efecto remoto de la insulina, c) dos tipos de activación de este mismo efecto remoto (bien lineal, bien con un punto de corte), y d) diversas condiciones iniciales. ABSTRACT Diabetes encompasses a series of metabolic diseases characterized by abnormally high blood glucose concentrations. In the case of type 1 diabetes (T1D), this situation is caused by a total absence of endogenous insulin secretion, which impedes the use of glucose by most tissues. In these circumstances, exogenous insulin supplies are necessary to maintain patient’s life; although caution is always needed to avoid acute decays in glycaemia below safe levels. In addition to insulin administrations, meal intakes and physical activity are fundamental factors influencing glucose homoeostasis. Consequently, a successful management of T1D should incorporate these two physiological phenomena, based on an appropriate identification and modelling of these events and their corresponding effect on the glucose-insulin balance. In particular, artificial pancreas systems –designed to perform an automated control of patient’s glycaemia levels– may benefit from the integration of this type of information. The first part of this PhD thesis covers the characterization of the acute effect of physical activity on glucose profiles. With this aim, a systematic review of literature and metaanalyses are conduced to determine responses to various exercise modalities in patients with T1D, assessed via rates-of-change magnitudes to quantify temporal variations in glycaemia. On the other hand, a reliable identification of physical activity periods is an essential prerequisite to feed artificial pancreas systems with information concerning exercise in ambulatory, free-living conditions. For this reason, the second part of this thesis focuses on the proposal and evaluation of an automatic system devised to recognize physical activity, classifying its intensity level (light, moderate or vigorous) and for vigorous periods, identifying also its exercise modality (aerobic, mixed or resistance); since both aspects have a distinctive influence on the predominant metabolic pathway involved in fuelling exercise, and therefore, in the glycaemic responses in T1D. Various combinations of machine learning and pattern recognition techniques are applied on the fusion of multi-modal signal sources, namely: accelerometry and heart rate measurements, which describe both mechanical aspects of movement and the physiological response of the cardiovascular system to exercise. An additional temporal filtering module is incorporated after recognition in order to exploit the considerable temporal coherence (i.e. redundancy) present in data, which stems from the fact that in practice, physical activity trends are often maintained stable along time, instead of fluctuating rapid and repeatedly. The third block of this PhD thesis addresses meal intakes in the context of T1D. In particular, a number of compartmental models are proposed and compared in terms of their ability to describe mathematically the remote effect of exogenous plasma insulin concentrations on the disposal rates of meal-attributable glucose, an aspect which had not yet been incorporated to the prevailing T1D patient models in literature. Data were acquired in an experiment conduced at the Institute of Metabolic Science (University of Cambridge, UK) on 16 young patients. A variable-target glucose clamp replicated their individual glucose profiles, observed during a preliminary visit after ingesting either a high glycaemic-load or a low glycaemic-load evening meal. The six mechanistic models under evaluation here comprised: a) two-compartmental submodels for glucose tracer masses, b) a single-compartmental submodel for insulin’s remote effect, c) two types of activations for this remote effect (either linear or with a ‘cut-off’ point), and d) diverse forms of initial conditions.
Resumo:
Emotion is generally argued to be an influence on the behavior of life systems, largely concerning flexibility and adaptivity. The way in which life systems acts in response to a particular situations of the environment, has revealed the decisive and crucial importance of this feature in the success of behaviors. And this source of inspiration has influenced the way of thinking artificial systems. During the last decades, artificial systems have undergone such an evolution that each day more are integrated in our daily life. They have become greater in complexity, and the subsequent effects are related to an increased demand of systems that ensure resilience, robustness, availability, security or safety among others. All of them questions that raise quite a fundamental challenges in control design. This thesis has been developed under the framework of the Autonomous System project, a.k.a the ASys-Project. Short-term objectives of immediate application are focused on to design improved systems, and the approaching of intelligence in control strategies. Besides this, long-term objectives underlying ASys-Project concentrate on high order capabilities such as cognition, awareness and autonomy. This thesis is placed within the general fields of Engineery and Emotion science, and provides a theoretical foundation for engineering and designing computational emotion for artificial systems. The starting question that has grounded this thesis aims the problem of emotion--based autonomy. And how to feedback systems with valuable meaning has conformed the general objective. Both the starting question and the general objective, have underlaid the study of emotion, the influence on systems behavior, the key foundations that justify this feature in life systems, how emotion is integrated within the normal operation, and how this entire problem of emotion can be explained in artificial systems. By assuming essential differences concerning structure, purpose and operation between life and artificial systems, the essential motivation has been the exploration of what emotion solves in nature to afterwards analyze analogies for man--made systems. This work provides a reference model in which a collection of entities, relationships, models, functions and informational artifacts, are all interacting to provide the system with non-explicit knowledge under the form of emotion-like relevances. This solution aims to provide a reference model under which to design solutions for emotional operation, but related to the real needs of artificial systems. The proposal consists of a multi-purpose architecture that implement two broad modules in order to attend: (a) the range of processes related to the environment affectation, and (b) the range or processes related to the emotion perception-like and the higher levels of reasoning. This has required an intense and critical analysis beyond the state of the art around the most relevant theories of emotion and technical systems, in order to obtain the required support for those foundations that sustain each model. The problem has been interpreted and is described on the basis of AGSys, an agent assumed with the minimum rationality as to provide the capability to perform emotional assessment. AGSys is a conceptualization of a Model-based Cognitive agent that embodies an inner agent ESys, the responsible of performing the emotional operation inside of AGSys. The solution consists of multiple computational modules working federated, and aimed at conforming a mutual feedback loop between AGSys and ESys. Throughout this solution, the environment and the effects that might influence over the system are described as different problems. While AGSys operates as a common system within the external environment, ESys is designed to operate within a conceptualized inner environment. And this inner environment is built on the basis of those relevances that might occur inside of AGSys in the interaction with the external environment. This allows for a high-quality separate reasoning concerning mission goals defined in AGSys, and emotional goals defined in ESys. This way, it is provided a possible path for high-level reasoning under the influence of goals congruence. High-level reasoning model uses knowledge about emotional goals stability, letting this way new directions in which mission goals might be assessed under the situational state of this stability. This high-level reasoning is grounded by the work of MEP, a model of emotion perception that is thought as an analogy of a well-known theory in emotion science. The work of this model is described under the operation of a recursive-like process labeled as R-Loop, together with a system of emotional goals that are assumed as individual agents. This way, AGSys integrates knowledge that concerns the relation between a perceived object, and the effect which this perception induces on the situational state of the emotional goals. This knowledge enables a high-order system of information that provides the sustain for a high-level reasoning. The extent to which this reasoning might be approached is just delineated and assumed as future work. This thesis has been studied beyond a long range of fields of knowledge. This knowledge can be structured into two main objectives: (a) the fields of psychology, cognitive science, neurology and biological sciences in order to obtain understanding concerning the problem of the emotional phenomena, and (b) a large amount of computer science branches such as Autonomic Computing (AC), Self-adaptive software, Self-X systems, Model Integrated Computing (MIC) or the paradigm of models@runtime among others, in order to obtain knowledge about tools for designing each part of the solution. The final approach has been mainly performed on the basis of the entire acquired knowledge, and described under the fields of Artificial Intelligence, Model-Based Systems (MBS), and additional mathematical formalizations to provide punctual understanding in those cases that it has been required. This approach describes a reference model to feedback systems with valuable meaning, allowing for reasoning with regard to (a) the relationship between the environment and the relevance of the effects on the system, and (b) dynamical evaluations concerning the inner situational state of the system as a result of those effects. And this reasoning provides a framework of distinguishable states of AGSys derived from its own circumstances, that can be assumed as artificial emotion.
Resumo:
The purpose of this Project is, first and foremost, to disclose the topic of nonlinear vibrations and oscillations in mechanical systems and, namely, nonlinear normal modes NNMs to a greater audience of researchers and technicians. To do so, first of all, the dynamical behavior and properties of nonlinear mechanical systems is outlined from the analysis of a pair of exemplary models with the harmonic balanced method. The conclusions drawn are contrasted with the Linear Vibration Theory. Then, it is argued how the nonlinear normal modes could, in spite of their limitations, predict the frequency response of a mechanical system. After discussing those introductory concepts, I present a Matlab package called 'NNMcont' developed by a group of researchers from the University of Liege. This package allows the analysis of nonlinear normal modes of vibration in a range of mechanical systems as extensions of the linear modes. This package relies on numerical methods and a 'continuation algorithm' for the computation of the nonlinear normal modes of a conservative mechanical system. In order to prove its functionality, a two degrees of freedom mechanical system with elastic nonlinearities is analized. This model comprises a mass suspended on a foundation by means of a spring-viscous damper mechanism -analogous to a very simplified model of most suspended structures and machines- that has attached a mass damper as a passive vibration control system. The results of the computation are displayed on frequency energy plots showing the NNMs branches along with modal curves and time-series plots for each normal mode. Finally, a critical analysis of the results obtained is carried out with an eye on devising what they can tell the researcher about the dynamical properties of the system.
Resumo:
Nonlinear-dynamical control techniques, also known as chaos control, have been used with great success to control a wide range of physical systems. Such techniques have been used to control the behavior of in vitro excitable biological tissue, suggesting their potential for clinical utility. However, the feasibility of using such techniques to control physiological processes has not been demonstrated in humans. Here we show that nonlinear-dynamical control can modulate human cardiac electrophysiological dynamics by rapidly stabilizing an unstable target rhythm. Specifically, in 52/54 control attempts in five patients, we successfully terminated pacing-induced period-2 atrioventricular-nodal conduction alternans by stabilizing the underlying unstable steady-state conduction. This proof-of-concept demonstration shows that nonlinear-dynamical control techniques are clinically feasible and provides a foundation for developing such techniques for more complex forms of clinical arrhythmia.
Resumo:
There is extensive evidence that the amygdala is involved in affectively influenced memory. The central hypothesis guiding the research reviewed in this paper is that emotional arousal activates the amygdala and that such activation results in the modulation of memory storage occurring in other brain regions. Several lines of evidence support this view. First, the effects of stress-related hormones (epinephrine and glucocorticoids) are mediated by influences involving the amygdala. In rats, lesions of the amygdala and the stria terminalis block the effects of posttraining administration of epinephrine and glucocorticoids on memory. Furthermore, memory is enhanced by posttraining intra-amygdala infusions of drugs that activate β-adrenergic and glucocorticoid receptors. Additionally, infusion of β-adrenergic blockers into the amygdala blocks the memory-modulating effects of epinephrine and glucocorticoids, as well as those of drugs affecting opiate and GABAergic systems. Second, an intact amygdala is not required for expression of retention. Inactivation of the amygdala prior to retention testing (by posttraining lesions or drug infusions) does not block retention performance. Third, findings of studies using human subjects are consistent with those of animal experiments. β-Blockers and amygdala lesions attenuate the effects of emotional arousal on memory. Additionally, 3-week recall of emotional material is highly correlated with positron-emission tomography activation (cerebral glucose metabolism) of the right amygdala during encoding. These findings provide strong evidence supporting the hypothesis that the amygdala is involved in modulating long-term memory storage.
Resumo:
Many stress proteins and their cognates function as molecular chaperones or as components of proteolytic systems. Viral infection can stimulate synthesis of stress proteins and particular associations of viral and stress proteins have been documented. However, demonstrations of functions for stress proteins in viral life cycles are few. We have initiated an investigation of the roles of stress proteins in eukaryotic viral life cycles using as a model the Ty3 retrovirus-like element of Saccharomyces cerevisiae. During stress, Ty3 transposition is inhibited; Ty3 DNA is not synthesized and, although precursor proteins are detected, mature Ty3 proteins and virus-like particles (VLPs) do not accumulate. The same phenotype is observed in the constitutively stressed ssa1 ssa2 mutant, which lacks two cytoplasmic members of the hsp70 family of chaperones. Ty3 VLPs preformed under nonstress conditions are degraded more rapidly if cells are shifted from 30 degrees C to 37 degrees C. These results suggest that Ty3 VLPs are destroyed by cellular stress proteins. Elevated expression of the yeast UBP3 gene, which encodes a protease that removes ubiquitin from proteins, allows mature Ty3 proteins and VLPs to accumulate in the ssa1 ssa2 mutant, suggesting that, at least under stress conditions, ubiquitination plays a role in regulating Ty3 transposition.
Resumo:
Despite considerable evidence that ethanol can enhance chloride flux through the gamma-aminobutyric acid type A (GABA/A/) receptor-channel complex in several central neuron types, the effect of ethanol on hippocampal GABAergic systems is still controversial. Therefore, we have reevaluated this interaction in hippocampal pyramidal neurons subjected to local monosynaptic activation combined with pharmacological isolation of the various components of excitatory and inhibitory synaptic potentials, using intracellular current- and voltage-clamp recording methods in the hippocampal slice. In accord with our previous findings, we found that ethanol had little effect on compound inhibitory postsynaptic potentials/currents (IPSP/Cs) containing both GABA/A/ and GABA/B/ components. However, after selective pharmacological blockade of the GABA/B/ component of the IPSP (GABA/B/-IPSP/C) by CGP-35348, low concentrations of ethanol (22-66 mM) markedly enhanced the peak amplitude, and especially the area, of the GABA/A/ component (GABA/A/-IPSP/C) in most CA1 pyramidal neurons. Ethanol had no significant effect on the peak amplitude or area of the pharmacologically isolated GABA/B/-inhibitory postsynaptic current (IPSC). These results provide new data showing that activation of GABAB receptors can obscure ethanol enhancement of GABA/A/ receptor function in hippocampus and suggest that similar methods of pharmacological isolation might be applied to other brain regions showing negative or mixed ethanol-GABA interactions.
Resumo:
In this study, a methodology based in a dynamical framework is proposed to incorporate additional sources of information to normalized difference vegetation index (NDVI) time series of agricultural observations for a phenological state estimation application. The proposed implementation is based on the particle filter (PF) scheme that is able to integrate multiple sources of data. Moreover, the dynamics-led design is able to conduct real-time (online) estimations, i.e., without requiring to wait until the end of the campaign. The evaluation of the algorithm is performed by estimating the phenological states over a set of rice fields in Seville (SW, Spain). A Landsat-5/7 NDVI series of images is complemented with two distinct sources of information: SAR images from the TerraSAR-X satellite and air temperature information from a ground-based station. An improvement in the overall estimation accuracy is obtained, especially when the time series of NDVI data is incomplete. Evaluations on the sensitivity to different development intervals and on the mitigation of discontinuities of the time series are also addressed in this work, demonstrating the benefits of this data fusion approach based on the dynamic systems.
Resumo:
Primary sex determination in placental mammals is a very well studied developmental process. Here, we aim to investigate the currently established scenario and to assess its adequacy to fully recover the observed phenotypes, in the wild type and perturbed situations. Computational modelling allows clarifying network dynamics, elucidating crucial temporal constrains as well as interplay between core regulatory modules.
Resumo:
Electrical energy storage is a really important issue nowadays. As electricity is not easy to be directly stored, it can be stored in other forms and converted back to electricity when needed. As a consequence, storage technologies for electricity can be classified by the form of storage, and in particular we focus on electrochemical energy storage systems, better known as electrochemical batteries. Largely the more widespread batteries are the Lead-Acid ones, in the two main types known as flooded and valve-regulated. Batteries need to be present in many important applications such as in renewable energy systems and in motor vehicles. Consequently, in order to simulate these complex electrical systems, reliable battery models are needed. Although there exist some models developed by experts of chemistry, they are too complex and not expressed in terms of electrical networks. Thus, they are not convenient for a practical use by electrical engineers, who need to interface these models with other electrical systems models, usually described by means of electrical circuits. There are many techniques available in literature by which a battery can be modeled. Starting from the Thevenin based electrical model, it can be adapted to be more reliable for Lead-Acid battery type, with the addition of a parasitic reaction branch and a parallel network. The third-order formulation of this model can be chosen, being a trustworthy general-purpose model, characterized by a good ratio between accuracy and complexity. Considering the equivalent circuit network, all the useful equations describing the battery model are discussed, and then implemented one by one in Matlab/Simulink. The model has been finally validated, and then used to simulate the battery behaviour in different typical conditions.
Resumo:
Federal Highway Administration, Office of Safety and Traffic Operations, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.