982 resultados para Biology, Molecular|Biology, Genetics|Health Sciences, Human Development


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elevated expression levels of the bcl-2 proto-oncogene have been correlated with the appearance of androgen independence in prostate cancer. Although bcl-2 was first cloned as the t (14:18) translocation breakpoint from human follicular B cell lymphoma, the mechanism of overexpression of bcl-2 is largely undefined for advanced prostate cancer, there being no gross alterations in the gene structure. We investigated the role of the product of the prostate apoptosis response gene-4 (Par-4) and the product of the Wilms' tumor 1 gene (WT1) in the regulation of Bcl-2 expression in prostate cancer cell lines. We observed growth arrest and apoptosis, upon decreasing Bcl-2 protein and transcript in the high Bcl-2 expressing, androgen-independent prostate cancer cell lines, by all trans-retinoic acid treatment but this did not occur in the androgen-dependent cell lines expressing low levels of Bcl-2. Changes in localization of Par-4, and an induction in the expression of WT1 protein accompanied the decrease in the Bcl-2 protein and transcript following all trans-retinoic acid treatment, in the androgen-independent prostate cancer cell line. In stable clones expressing ectopic Par-4 we observed decreased Bcl-2 protein and transcript. This was accompanied by an induction in WT1 expression. Finally, we detected Par-4 and WT1 proteins binding to a previously identified WT1 binding site on the bcl-2 promoter both in vitro and in vivo leading to a decrease in transcription from the bcl-2 promoter. We conclude that Par-4 regulates Bcl-2 through a WT1 binding site on the bcl-2 promoter. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Normal development and tissue homeostasis requires the carefully orchestrated balance between cell proliferation and cell death. Cell cycle checkpoints control the extent of cell proliferation. Cell death is coordinated through the activation of a cell suicide pathway that results in the morphologically recognizable form of death, apoptosis. Tumorigenesis requires that the balance between these two pathways be disrupted. The tumor suppressor protein Rb has not only been shown to be involved in the enforcement of cell cycle checkpoints, but has also been implicated in playing a role in the regulation of apoptosis. The manner in which Rb enforces cell cycle checkpoints has been well studied; however, its involvement in the regulation of apoptosis is still very unclear. p84N5 is a novel nuclear death domain containing protein that has been shown to interact with the N-terminus of Rb. The fact that it contains a death domain and the fact that it is nuclear localized possibly provides the first known mechanism for apoptotic signaling from the nucleus. The following study tested the hypothesis that the novel exclusively nuclear death domain containing protein p84N5 is an important mediator of programmed cell death and that its apoptotic function is reliant upon its nuclear localization and is regulated by unique functional domains within the p84N5 protein. We identified the p84N5 nuclear localization signal (NLS), eliminated it, and tested the functional significance of nuclear localization by using wild type and mutant sequences fused to EGFP-C1 (Clontech) to create wild type GFPN5 and subsequent mutants. The results of these assays demonstrated exclusive nuclear localization of GFPN5 is required for normal p84N5 induced apoptosis. We further conducted large-scale mutagenesis of the GFPN5 construct to identify a minimal region within p84N5 capable of interacting with Rb. We were able to identify a minimal sequence containing p84N5 amino acids 318 to 464 that was capable of interacting with Rb in co-immunoprecipitation assays. We continued by conducting a structural and functional analysis to identify the region or regions within p84N5 responsible for inducing apoptosis. Point mutations and small-scale deletions within the death domain of p84N5 lessened the effect but did not eliminate p84N5-induced cytotoxicity. Further analysis revealed that the minimal sequence of 318 to 464 of p84N5 was capable of inducing apoptosis to a similar degree as wild-type GFPN5 protein. Since amino acids 318 to 464 of p84N5 are capable of inducing apoptosis and interacting with Rb, we propose possible mechanisms whereby p84N5 may function in a Rb regulated manner. These results demonstrate that p84N5 induced apoptosis is reliant upon its nuclear localization and is regulated by unique functional domains within the p84N5 protein. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular events involved in specification of early hematopoietic system are not well known. In Xenopus, a paired-box homeodomain family (Mix.1–4) has been implicated in this process. Although Mix-like homeobox genes have been isolated from zebrafish (bon), chicken (CMIX) and mice (MmI/MIXL1), isolation of a human Mix-like gene has remained elusive. ^ We have recently isolated and characterized a novel human Mix-like homeobox gene with a predicted open reading frame of 232 amino acids designated the Mix.1 homeobox (Xenopus laevis)-like gene (MIXL). The overall identity of this novel protein to CMIX and MmI/MIXL1 is 41% and 69%, respectively. However, the identity in the homeodomain is 66% to that of Xenopus Mix.1, 79% to that of CMIX, and 94% to that of MmI/MIXL1. In normal hematopoiesis, MIXL expression appears to be restricted immature B and T lymphoid cells. Several acute leukemic cell lines of B, T and myeloid lineages express MIXL suggesting a survival/block in differentiation advantage. Furthermore, Xenopus animal cap assay revealed that MIXL could induce expression of the α-globin gene, suggesting a functional conservation of the homeodomain. ^ Biochemical analysis revealed that MIXL proteins are phosphorylated at multiple sites. Immunoprecipitation and immunoblotting confirmed that MIXL is tyrosine phosphorylated. Mutational analysis determined that Tyr20 appears to be the site for phosphorylation. However, deletion analysis preliminarily showed that the proline-rich domain appears not to be necessary for tyrosine phosphorylation. The novel finding will help us make a deeper understanding of the regulation on homeodomain proteins by rarely reported tyrosine phosphorylation. ^ Taken together, isolation of the MIXL gene is the first step toward understanding novel regulatory circuits in early hematopoietic differentiation and malignant transformation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The small leucine-rich repeat proteoglycans (or SLRPs) are a group of extracellular proteins (ECM) that belong to the leucine-rich repeat (LRR) superfamily of proteins. The LRR is a protein folding motif composed of 20–30 amino acids with leucines in conserved positions. LRR-containing proteins are present in a broad spectrum of organisms and possess diverse cellular functions and localization. In mammals, the SLRPs are abundant in connective tissues, such as bones, cartilage, tendons, skin, and blood vessels. We have discovered a new member of the class I small leucine rich repeat proteoglycan (SLRP) family which is distinct from the other class I SLRPs since it possesses a unique stretch of aspartate residues at its N-terminus. For this reason, we called the molecule asporin. The deduced amino acid sequence is about 50% identical (and 70% similar) to decorin and biglycan. However, asporin does not contain a serine/glycine dipeptide sequence required for the assembly of O-linked glycosaminoglycans and is probably not a proteoglycan. The tissue expression of asporin partially overlaps with the expression of decorin and biglycan. During mouse embryonic development, asporin mRNA expression was detected primarily in the skeleton and other specialized connective tissues; very little asporin message was detected in the major parenchymal organs. The mouse asporin gene structure is similar to that of biglycan and decorin with 8 exons. The asporin gene is localized to human chromosome 9q22-9g21.3 where asporin is part of a SLRP gene cluster that includes ECM2, osteoadherin, and osteoglycin. This gene cluster of four LRR-encoding genes is embedded in a 238 kilobase intron of another novel gene named Tes9orf that is expressed primarily in the testes of the adult mouse. The SLRP genes are not present in Drosophila or C. elegans , but reside in three separate gene clusters in the puffer fish, mice and humans. Targeted disruption of individual mouse SLRP genes display minor connective tissue defects such as skin fragility, tendon laxity, minor growth plate defects, and mild osteoporosis. However, double and triple knockouts of SLRP genes exacerbate these phenotypes. Both the double epiphycan/biglycan and the triple PRELP/fibromodulin/biglycan knockout mice exhibit premature osteoarthritis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-Hodgkin's Lymphomas (NHL) are a group (>30) of important human lymphoid cancers that unlike other tumors today, are showing a marked increase in incidence. The lack of insight to the pathogenesis of B-cell NHL poses a significant problem in the early detection and effective treatment of these malignancies. This study shows that large B-cell lymphoma (LBCL) cells, the most common type of B-cell NHL (account for more than 30% of cases), have developed a novel mechanism for autonomous neoplastic B cell growth. We have identified that the key transcription factor NF-κB, is constitutively activated in LBCL cell lines and primary biopsy-derived LBCL cells, suggesting that they are autonomously activated, and do not require accessory T-cell signaling for cell growth and survival. Further studies have indicated that LBCL cells ectopically express an important T-cell associated co-mitogenic factor, CD154 (CD40 ligand), that is able to internally activate the CD401NF-κB pathway, through constitutive binding to its cognate receptor, CD40, on the lymphoma cell surface. CD40 activation triggers the formation of a “Signalosome” comprising virtually the entire canonical CD40/NF-κB signaling pathway that is anchored by CD40 in plasma membrane lipid rafts. The CD40 Signalosome is vulnerable to interdiction by antibody against CD40 that disrupts the Signalosome and induces cell death in the malignant cells. In addition to constitutive NF-κB activation, we have found that the nuclear factor of activated T cells (NFAT) transcription factor is also constitutively activated in LBCL cells. We have demonstrated that the constitutively active NFATc1 and c-rel members of the NFAT and NF-κB families of transcription factors, respectively, interact with each other, bind to the CD154 promoter, and synergistically activate CD154 gene transcription. Down-regulation of NFATc1 and c-rel with small interfering RNA inhibits CD154 gene transcription and lymphoma cell growth. Our findings suggest that continuous CD40 activation not only provides dysregulated proliferative stimuli for lymphoma cell growth and extended tumor cell survival, but also allows continuous regeneration of the CD40 ligand in the lymphoma cell and thereby recharges the system through a positive feedback mechanism. Targeting the CD40/NF-κB signaling pathway could provide potential therapeutic modalities for LBCL cells in the future. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ErbB2 overexpression in breast tumors increases metastasis, angiogenesis, and reduces survival. To study ErbB2 signaling mechanisms in metastasis and angiogenesis, a spontaneous metastasis assay was performed using human breast cancer cells transfected with constitutively active ErbB2 kinase (V659E), an ErbB2 kinase-dead mutant (K753M), or vector control. Mice injected with V659E had increased metastasis and tumor microvessel density; and the increased angiogenesis in vivo from the V659E transfectants paralleled increased angiogenic potential in vitro, which resulted from increased VEGF by increased protein synthesis. This appeared to be mediated through a PI3K, Akt, mTOR, p70S6K-signaling pathway. Furthermore, V659E xenografts had significantly increased phosphorylated Akt, phosphorylated p70S6K, and VEGF compared with control. To validate the clinical relevance of these findings, human breast tumor samples were examined. Tumors overexpressing ErbB2 correlated with p70S6K phosphorylation and VEGF expression, which significantly correlated with higher levels of Akt and mTOR phosphorylation. Additionally, patients with tumors having increased p70S6K phosphorylation showed a trend for worse disease-free survival and increased metastasis. Together, ErbB2 increases VEGF expression by activating the p70S6K signaling pathway, which may serve as targets for antiangiogenic and antimetastatic therapies. ^ Herceptin is an anti-ErbB2 antibody that demonstrated anti-tumor function, especially in combination with other chemotherapies such as Taxol, in patients with ErbB2-overexpressing tumors. Since the repeated administration of low-dose chemotherapy endorsed an antiangiogenic effect in vitro, and Herceptin was shown to inhibit angiogenesis in tumor xenografts, I investigated whether combined Taxol plus Herceptin treatment inhibits ErbB2-mediated angiogenic responses more effectively. Mice with ErbB2-overexpressing xenografts were treated with control, Herceptin, Taxol, or combination Herceptin plus Taxol. Mice treated with the combination exhibited reduced tumor volumes, tumor microvessel densities, and lung metastasis; and ErbB2-overexpressing cells treated with the combination secreted less VEGF, and stimulated less endothelial cell migration. Furthermore, Akt phosphorylation contributed to VEGF upregulation and was most effectively reduced by combination treatment. ^ In summary, ErbB2 activates signaling to Akt and p70S6K leading to increased VEGF and angiogenesis. Combination Herceptin plus Taxol treatment most effectively inhibited ErbB2-mediated angiogenesis, resulting in pronounced tumoricidal effects, and may be mediated through reduction of phosphorylated Akt, a positive regulator in the p70S6K pathway. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human t(3;21)(q26;q22) translocation is found as a secondary mutation in some cases of chronic myelogenous leukemia during the blast phase and in therapy-related myelodysplasia and acute myelogenous leukemia. One result of this translocation is a fusion between the AML1, MDS1, and EVI1 genes, which encodes a transcription factor of approximately 200 kDa. The role of the AML1/MDS1/EVI1 (AME) fusion gene in leukemogenesis is largely unknown. In this study, we analyzed the effect of the AME fusion gene in vivo by expressing it in mouse bone marrow cells via retroviral transduction. We found that mice transplanted with AME-transduced bone marrow cells suffered from an acute myelogenous leukemia (AML) 5–13 mo after transplantation. The disease could be readily transferred into secondary recipients with a much shorter latency. Morphological analysis of peripheral blood and bone marrow smears demonstrated the presence of myeloid blast cells and differentiated but immature cells of both myelocytic and monocytic lineages. Cytochemical and flow cytometric analysis confirmed that these mice had a disease similar to the human acute myelomonocytic leukemia. This murine model for AME-induced AML will help dissect the molecular mechanism of AML and the molecular biology of the AML1, MDS1, and EVI1 genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"TID-4500 ; Biology and Medicine."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prepared for the ICRDB Program by the Current Cancer Research Project Analysis Center.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prepared for the ICRDB Program by the Current Cancer Research Project Analysis Center.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The central dogma of biology holds that genetic information normally flows from DNA to RNA to protein. As a consequence it has been generally assumed that genes generally code for proteins, and that proteins fulfil not only most structural and catalytic but also most regulatory functions, in all cells, from microbes to mammals. However, the latter may not be the case in complex organisms. A number of startling observations about the extent of non-protein-coding RNA (ncRNA) transcription in the higher eukaryotes and the range of genetic and epigenetic phenomena that are RNA-directed suggests that the traditional view of the structure of genetic regulatory systems in animals and plants may be incorrect. ncRNA dominates the genomic output of the higher organisms and has been shown to control chromosome architecture, mRNA turnover and the developmental timing of protein expression, and may also regulate transcription and alternative splicing. This paper re-examines the available evidence and suggests a new framework for considering and understanding the genomic programming of biological complexity, autopoletic development and phenotypic variation. BioEssays 25:930-939,2003. (C) 2003 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The patched gene (Ptc) is a member of the hedgehog signaling pathway which plays a central role in the development of many invertebrate and vertebrate tissues. In addition, Ptc and a number of other pathway members are mutated in some common human cancers. Patched is the receptor for the hedgehog ligand and in the mouse ablation of the Ptc gene leads to developmental defects and an embryonic lethal phenotype. Here we describe a conditional Ptc allele in mice which will have utility for the temporospatial ablation of Ptc function. genesis 36:158-161, 2003. (C) 2003 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bloom syndrome and ataxia-telangiectasia are autosomal recessive human disorders characterized by immunodeficiency, genome instability and predisposition to develop cancer. Recent data reveal that the products of these two genes, BLM and ATM, interact and function together in recognizing abnormal DNA structures. To investigate the function of these two molecules in DNA damage recognition, we generated double knockouts of ATM(-/-) BLM-/- in the DT40 chicken B-lymphocyte cell line. The double mutant cells were viable and exhibited a variety of characteristics of both ATM(-/-) and BLM-/- cells. There was no evidence for exacerbation of either phenotype; however, the more extreme radiosensitivity seen in ATM(-/-) and the elevated sister chromatid exchange seen in BLM-/- cells were retained in the double mutants. These results suggest that ATM and BLM have largely distinct roles in recognizing different forms of damage in DNA, but are also compatible with partially overlapping functions in recognizing breaks in radiation-damaged DNA.