999 resultados para Biology, Biostatistics|Statistics
Resumo:
Human activities have serious impacts on marine apex predators. Inadequate knowledge of the spatial and trophic ecology of these marine animals ultimately compromises the viability of their populations and impedes our ability to use them as environmental biomonitors. Intrinsic biogeochemical markers, such as stable isotopes, fatty acids, trace elements, and chemical pollutants, are increasingly being used to trace the spatial and trophic ecology of marine top predators. Notable advances include the emergence of the first oceanographic"isoscapes" (isotopic geographic gradients), the advent of compound-specific isotopic analyses, improvements in diet reconstruction through Bayesian statistics, and tissue analysis of tracked animals to ground-truth biogeochemical profiles. However, most researchers still focus on only a few tracers. Moreover, insufficient knowledge of the biogeochemical integration in tissues, fractionation and routing processes, and geographic and temporal variability in baseline levels continue to hamper the resolution and potential of these markers in studying the spatial and feeding ecology of top predators.
Resumo:
The reduction of quantum scattering leads to the suppression of shot noise. In this Letter, we analyze the crossover from the quantum transport regime with universal shot noise to the classical regime where noise vanishes. By making use of the stochastic path integral approach, we find the statistics of transport and the transmission properties of a chaotic cavity as a function of a system parameter controlling the crossover. We identify three different scenarios of the crossover.
Resumo:
In general, models of ecological systems can be broadly categorized as ’top-down’ or ’bottom-up’ models, based on the hierarchical level that the model processes are formulated on. The structure of a top-down, also known as phenomenological, population model can be interpreted in terms of population characteristics, but it typically lacks an interpretation on a more basic level. In contrast, bottom-up, also known as mechanistic, population models are derived from assumptions and processes on a more basic level, which allows interpretation of the model parameters in terms of individual behavior. Both approaches, phenomenological and mechanistic modelling, can have their advantages and disadvantages in different situations. However, mechanistically derived models might be better at capturing the properties of the system at hand, and thus give more accurate predictions. In particular, when models are used for evolutionary studies, mechanistic models are more appropriate, since natural selection takes place on the individual level, and in mechanistic models the direct connection between model parameters and individual properties has already been established. The purpose of this thesis is twofold. Firstly, a systematical way to derive mechanistic discrete-time population models is presented. The derivation is based on combining explicitly modelled, continuous processes on the individual level within a reproductive period with a discrete-time maturation process between reproductive periods. Secondly, as an example of how evolutionary studies can be carried out in mechanistic models, the evolution of the timing of reproduction is investigated. Thus, these two lines of research, derivation of mechanistic population models and evolutionary studies, are complementary to each other.
Resumo:
High-throughput screening of cellular effects of RNA interference (RNAi) libraries is now being increasingly applied to explore the role of genes in specific cell biological processes and disease states. However, the technology is still limited to specialty laboratories, due to the requirements for robotic infrastructure, access to expensive reagent libraries, expertise in high-throughput screening assay development, standardization, data analysis and applications. In the future, alternative screening platforms will be required to expand functional large-scale experiments to include more RNAi constructs, allow combinatorial loss-of-function analyses (e.g. genegene or gene-drug interaction), gain-of-function screens, multi-parametric phenotypic readouts or comparative analysis of many different cell types. Such comprehensive perturbation of gene networks in cells will require a major increase in the flexibility of the screening platforms, throughput and reduction of costs. As an alternative for the conventional multi-well based high-throughput screening -platforms, here the development of a novel cell spot microarray method for production of high density siRNA reverse transfection arrays is described. The cell spot microarray platform is distinguished from the majority of other transfection cell microarray techniques by the spatially confined array layout that allow highly parallel screening of large-scale RNAi reagent libraries with assays otherwise difficult or not applicable to high-throughput screening. This study depicts the development of the cell spot microarray method along with biological application examples of high-content immunofluorescence and phenotype based cancer cell biological analyses focusing on the regulation of prostate cancer cell growth, maintenance of genomic integrity in breast cancer cells, and functional analysis of integrin protein-protein interactions in situ.
Resumo:
Systems biology is a new, emerging and rapidly developing, multidisciplinary research field that aims to study biochemical and biological systems from a holistic perspective, with the goal of providing a comprehensive, system- level understanding of cellular behaviour. In this way, it addresses one of the greatest challenges faced by contemporary biology, which is to compre- hend the function of complex biological systems. Systems biology combines various methods that originate from scientific disciplines such as molecu- lar biology, chemistry, engineering sciences, mathematics, computer science and systems theory. Systems biology, unlike “traditional” biology, focuses on high-level concepts such as: network, component, robustness, efficiency, control, regulation, hierarchical design, synchronization, concurrency, and many others. The very terminology of systems biology is “foreign” to “tra- ditional” biology, marks its drastic shift in the research paradigm and it indicates close linkage of systems biology to computer science. One of the basic tools utilized in systems biology is the mathematical modelling of life processes tightly linked to experimental practice. The stud- ies contained in this thesis revolve around a number of challenges commonly encountered in the computational modelling in systems biology. The re- search comprises of the development and application of a broad range of methods originating in the fields of computer science and mathematics for construction and analysis of computational models in systems biology. In particular, the performed research is setup in the context of two biolog- ical phenomena chosen as modelling case studies: 1) the eukaryotic heat shock response and 2) the in vitro self-assembly of intermediate filaments, one of the main constituents of the cytoskeleton. The range of presented approaches spans from heuristic, through numerical and statistical to ana- lytical methods applied in the effort to formally describe and analyse the two biological processes. We notice however, that although applied to cer- tain case studies, the presented methods are not limited to them and can be utilized in the analysis of other biological mechanisms as well as com- plex systems in general. The full range of developed and applied modelling techniques as well as model analysis methodologies constitutes a rich mod- elling framework. Moreover, the presentation of the developed methods, their application to the two case studies and the discussions concerning their potentials and limitations point to the difficulties and challenges one encounters in computational modelling of biological systems. The problems of model identifiability, model comparison, model refinement, model inte- gration and extension, choice of the proper modelling framework and level of abstraction, or the choice of the proper scope of the model run through this thesis.
Resumo:
Prostate cancer initially responds to hormone-based therapeutics such as anti-androgen treatment or chemotherapeutics but eventually becomes resistant. Novel treatment options are therefore urgently needed. This thesis study applied a high-throughput screen of 4910 known drugs and drug-like small molecules to identify compounds that selectively inhibit growth of prostate cancer cells. In addition, the mechanisms underlying the cellular sensitivity to potent cancer selective compounds were addressed. Surprisingly, many of the compounds currently used in the clinics or studied in clinical trials were not cancer-selective. Only four drugs, aldehyde dehydrogenase inhibitor disulfiram (Antabus), antibiotic ionophore monensin, histone deacetylase inhibitor tricostatin A and fungicide thiram inhibited prostate cancer cell growth at nanomolar concentrations without major effects on non-malignant prostate epithelial cells. Disulfiram, monensin and a structurally similar compound to monensin, salinomycin, induced oxidative stress and inhibited aldehyde dehydrogenase activity. Moreover, monensin and salinomycin reduced androgen receptor signalling and steroidogenesis, enforced cell differentiation and reduced the overall levels of cancer stem cells. Taken together, novel and potentially prostate cancer-selective therapeutic agents were identified in this study, including the description of a multitude of intoxicating mechanisms such as those relating to oxidative stress. The results provide novel insights into prostate cancer biology and exemplify useful means of considering novel approaches to cancer treatment.
Resumo:
In the current study, we performed a soybean production spatial distribution analysis in Paraná State. Seven crop-year data, from 2003-04 to 2009-10, obtained from the Paraná Department of Agriculture and Supply (SEAB) were used to develop a Boxmap for each crop-year, show soybean production throughout this time interval. Moran's index was used to measure spatial autocorrelation among municipalities at an aggregate level, while LISA index local correlation. For each index, different contiguity matrix and order were used and there was a significance level study. As a result, we have showed spatial relationship among cities regarding the production, which allowed the indication of high and low production clusters. Finally, identifying main soybean-producing cities, what may provide supply chain members with information to strengthen the crop production in Paraná.
Resumo:
Cells of epithelial origin, e.g. from breast and prostate cancers, effectively differentiate into complex multicellular structures when cultured in three-dimensions (3D) instead of conventional two-dimensional (2D) adherent surfaces. The spectrum of different organotypic morphologies is highly dependent on the culture environment that can be either non-adherent or scaffold-based. When embedded in physiological extracellular matrices (ECMs), such as laminin-rich basement membrane extracts, normal epithelial cells differentiate into acinar spheroids reminiscent of glandular ductal structures. Transformed cancer cells, in contrast, typically fail to undergo acinar morphogenic patterns, forming poorly differentiated or invasive multicellular structures. The 3D cancer spheroids are widely accepted to better recapitulate various tumorigenic processes and drug responses. So far, however, 3D models have been employed predominantly in the Academia, whereas the pharmaceutical industry has yet to adopt a more widely and routine use. This is mainly due to poor characterisation of cell models, lack of standardised workflows and high throughput cell culture platforms, and the availability of proper readout and quantification tools. In this thesis, a complete workflow has been established entailing well-characterised 3D cell culture models for prostate cancer, a standardised 3D cell culture routine based on high-throughput-ready platform, automated image acquisition with concomitant morphometric image analysis, and data visualisation, in order to enable large-scale high-content screens. Our integrated suite of software and statistical analysis tools were optimised and validated using a comprehensive panel of prostate cancer cell lines and 3D models. The tools quantify multiple key cancer-relevant morphological features, ranging from cancer cell invasion through multicellular differentiation to growth, and detect dynamic changes both in morphology and function, such as cell death and apoptosis, in response to experimental perturbations including RNA interference and small molecule inhibitors. Our panel of cell lines included many non-transformed and most currently available classic prostate cancer cell lines, which were characterised for their morphogenetic properties in 3D laminin-rich ECM. The phenotypes and gene expression profiles were evaluated concerning their relevance for pre-clinical drug discovery, disease modelling and basic research. In addition, a spontaneous model for invasive transformation was discovered, displaying a highdegree of epithelial plasticity. This plasticity is mediated by an abundant bioactive serum lipid, lysophosphatidic acid (LPA), and its receptor LPAR1. The invasive transformation was caused by abrupt cytoskeletal rearrangement through impaired G protein alpha 12/13 and RhoA/ROCK, and mediated by upregulated adenylyl cyclase/cyclic AMP (cAMP)/protein kinase A, and Rac/ PAK pathways. The spontaneous invasion model tangibly exemplifies the biological relevance of organotypic cell culture models. Overall, this thesis work underlines the power of novel morphometric screening tools in drug discovery.
Resumo:
This dissertation examines knowledge and industrial knowledge creation processes. It looks at the way knowledge is created in industrial processes based on data, which is transformed into information and finally into knowledge. In the context of this dissertation the main tool for industrial knowledge creation are different statistical methods. This dissertation strives to define industrial statistics. This is done using an expert opinion survey, which was sent to a number of industrial statisticians. The survey was conducted to create a definition for this field of applied statistics and to demonstrate the wide applicability of statistical methods to industrial problems. In this part of the dissertation, traditional methods of industrial statistics are introduced. As industrial statistics are the main tool for knowledge creation, the basics of statistical decision making and statistical modeling are also included. The widely known Data Information Knowledge Wisdom (DIKW) hierarchy serves as a theoretical background for this dissertation. The way that data is transformed into information, information into knowledge and knowledge finally into wisdom is used as a theoretical frame of reference. Some scholars have, however, criticized the DIKW model. Based on these different perceptions of the knowledge creation process, a new knowledge creation process, based on statistical methods is proposed. In the context of this dissertation, the data is a source of knowledge in industrial processes. Because of this, the mathematical categorization of data into continuous and discrete types is explained. Different methods for gathering data from processes are clarified as well. There are two methods for data gathering in this dissertation: survey methods and measurements. The enclosed publications provide an example of the wide applicability of statistical methods in industry. In these publications data is gathered using surveys and measurements. Enclosed publications have been chosen so that in each publication, different statistical methods are employed in analyzing of data. There are some similarities between the analysis methods used in the publications, but mainly different methods are used. Based on this dissertation the use of statistical methods for industrial knowledge creation is strongly recommended. With statistical methods it is possible to handle large datasets and different types of statistical analysis results can easily be transformed into knowledge.
Resumo:
The aim of this study was to investigate the diagnosis delay and its impact on the stage of disease. The study also evaluated a nuclear DNA content, immunohistochemical expression of Ki-67 and bcl-2, and the correlation of these biological features with the clinicopathological features and patient outcome. 200 Libyan women, diagnosed during 2008–2009 were interviewed about the period from the first symptoms to the final histological diagnosis of breast cancer. Also retrospective preclinical and clinical data were collected from medical records on a form (questionnaire) in association with the interview. Tumor material of the patients was collected and nuclear DNA content analysed using DNA image cytometry. The expression of Ki-67 and bcl-2 were assessed using immunohistochemistry (IHC). The studies described in this thesis show that the median of diagnosis time for women with breast cancer was 7.5 months and 56% of patients were diagnosed within a period longer than 6 months. Inappropriate reassurance that the lump was benign was an important reason for prolongation of the diagnosis time. Diagnosis delay was also associated with initial breast symptom(s) that did not include a lump, old age, illiteracy, and history of benign fibrocystic disease. The patients who showed diagnosis delay had bigger tumour size (p<0.0001), positive lymph nodes (p<0.0001), and high incidence of late clinical stages (p<0.0001). Biologically, 82.7% of tumors were aneuploid and 17.3% were diploid. The median SPF of tumors was 11% while the median positivity of Ki-67 was 27.5%. High Ki-67 expression was found in 76% of patients, and high SPF values in 56% of patients. Positive bcl-2 expression was found in 62.4% of tumors. 72.2% of the bcl-2 positive samples were ER-positive. Patients who had tumor with DNA aneuploidy, high proliferative activity and negative bcl-2 expression were associated with a high grade of malignancy and short survival. The SPF value is useful cell proliferation marker in assessing prognosis, and the decision cut point of 11% for SPF in the Libyan material was clearly significant (p<0.0001). Bcl-2 is a powerful prognosticator and an independent predictor of breast cancer outcome in the Libyan material (p<0.0001). Libyan breast cancer was investigated in these studies from two different aspects: health services and biology. The results show that diagnosis delay is a very serious problem in Libya and is associated with complex interactions between many factors leading to advanced stages, and potentially to high mortality. Cytometric DNA variables, proliferative markers (Ki-67 and SPF), and oncoprotein bcl-2 negativity reflect the aggressive behavior of Libyan breast cancer and could be used with traditional factors to predict the outcome of individual patients, and to select appropriate therapy.
Resumo:
The floral biology of three weeds, Ipomoea cairica, I. grandifolia and I. nil (Convolvulaceae), was studied in Botucatu and Jaboticabal, São Paulo, in southeastern Brazil. The three species are melittophilous, with a varied set of floral visitors, but with some overlapping. Cluster analysis using Jacquard similarity index indicated a greater similarity among different plant species in the same locality than among the populations at different places, in relation to floral visitor sets. The promiscuous and opportunistic features of the flowers were shown, with such type of adaptation to pollination being advantageous to weeds since pollinator availability is unpredictable at ruderal environments.
Resumo:
A study of the floral biology and the breeding system of Ferdinandusa speciosa Pohl (Rubiaceae) was carried out from March to September 1996 in Uberlândia, MG, central Brazil. This species is a shrub or small tree that occurs in swampy edges of gallery forests. The two studied populations flowered somewhat asynchronously from March to July. The tubular flowers are red, approximately 4.7 cm long and last for two days. They are protandrous and the pollen is available one day before the stigma becomes receptive. The beginning of anthesis and the opening of the stigmatic lips occur at dusk. The nectar is secreted during both the male and the female phases, with concentration of sugars greater in the male phase. The flowers are pollinated by two hummingbird species, Chlorostilbon aureoventris and Phaethornis pretrei. Ferdinandusa speciosa is a self-compatible, non-apomictic species, with low fruit production under natural conditions in the populations studied. No differences were found between fruit set of self- and cross-pollinated flowers, nor in the pollen tube growth rate in the pistils of these flowers. The seeds formed by cross-pollination are larger, heavier and show a higher percentage of germination than those formed by self-pollination, which indicates inbreeding depression. This result suggests that, although the species is self-compatible, cross-pollination may be advantageous.