893 resultados para Biogeography, Bioregions, Subregion, Statistical Modelling, GIS, Finite Mixture Models
Resumo:
Ma thèse s’intéresse aux politiques de santé conçues pour encourager l’offre de services de santé. L’accessibilité aux services de santé est un problème majeur qui mine le système de santé de la plupart des pays industrialisés. Au Québec, le temps médian d’attente entre une recommandation du médecin généraliste et un rendez-vous avec un médecin spécialiste était de 7,3 semaines en 2012, contre 2,9 semaines en 1993, et ceci malgré l’augmentation du nombre de médecins sur cette même période. Pour les décideurs politiques observant l’augmentation du temps d’attente pour des soins de santé, il est important de comprendre la structure de l’offre de travail des médecins et comment celle-ci affecte l’offre des services de santé. Dans ce contexte, je considère deux principales politiques. En premier lieu, j’estime comment les médecins réagissent aux incitatifs monétaires et j’utilise les paramètres estimés pour examiner comment les politiques de compensation peuvent être utilisées pour déterminer l’offre de services de santé de court terme. En second lieu, j’examine comment la productivité des médecins est affectée par leur expérience, à travers le mécanisme du "learning-by-doing", et j’utilise les paramètres estimés pour trouver le nombre de médecins inexpérimentés que l’on doit recruter pour remplacer un médecin expérimenté qui va à la retraite afin de garder l’offre des services de santé constant. Ma thèse développe et applique des méthodes économique et statistique afin de mesurer la réaction des médecins face aux incitatifs monétaires et estimer leur profil de productivité (en mesurant la variation de la productivité des médecins tout le long de leur carrière) en utilisant à la fois des données de panel sur les médecins québécois, provenant d’enquêtes et de l’administration. Les données contiennent des informations sur l’offre de travail de chaque médecin, les différents types de services offerts ainsi que leurs prix. Ces données couvrent une période pendant laquelle le gouvernement du Québec a changé les prix relatifs des services de santé. J’ai utilisé une approche basée sur la modélisation pour développer et estimer un modèle structurel d’offre de travail en permettant au médecin d’être multitâche. Dans mon modèle les médecins choisissent le nombre d’heures travaillées ainsi que l’allocation de ces heures à travers les différents services offerts, de plus les prix des services leurs sont imposés par le gouvernement. Le modèle génère une équation de revenu qui dépend des heures travaillées et d’un indice de prix représentant le rendement marginal des heures travaillées lorsque celles-ci sont allouées de façon optimale à travers les différents services. L’indice de prix dépend des prix des services offerts et des paramètres de la technologie de production des services qui déterminent comment les médecins réagissent aux changements des prix relatifs. J’ai appliqué le modèle aux données de panel sur la rémunération des médecins au Québec fusionnées à celles sur l’utilisation du temps de ces mêmes médecins. J’utilise le modèle pour examiner deux dimensions de l’offre des services de santé. En premierlieu, j’analyse l’utilisation des incitatifs monétaires pour amener les médecins à modifier leur production des différents services. Bien que les études antérieures ont souvent cherché à comparer le comportement des médecins à travers les différents systèmes de compensation,il y a relativement peu d’informations sur comment les médecins réagissent aux changementsdes prix des services de santé. Des débats actuels dans les milieux de politiques de santé au Canada se sont intéressés à l’importance des effets de revenu dans la détermination de la réponse des médecins face à l’augmentation des prix des services de santé. Mon travail contribue à alimenter ce débat en identifiant et en estimant les effets de substitution et de revenu résultant des changements des prix relatifs des services de santé. En second lieu, j’analyse comment l’expérience affecte la productivité des médecins. Cela a une importante implication sur le recrutement des médecins afin de satisfaire la demande croissante due à une population vieillissante, en particulier lorsque les médecins les plus expérimentés (les plus productifs) vont à la retraite. Dans le premier essai, j’ai estimé la fonction de revenu conditionnellement aux heures travaillées, en utilisant la méthode des variables instrumentales afin de contrôler pour une éventuelle endogeneité des heures travaillées. Comme instruments j’ai utilisé les variables indicatrices des âges des médecins, le taux marginal de taxation, le rendement sur le marché boursier, le carré et le cube de ce rendement. Je montre que cela donne la borne inférieure de l’élasticité-prix direct, permettant ainsi de tester si les médecins réagissent aux incitatifs monétaires. Les résultats montrent que les bornes inférieures des élasticités-prix de l’offre de services sont significativement positives, suggérant que les médecins répondent aux incitatifs. Un changement des prix relatifs conduit les médecins à allouer plus d’heures de travail au service dont le prix a augmenté. Dans le deuxième essai, j’estime le modèle en entier, de façon inconditionnelle aux heures travaillées, en analysant les variations des heures travaillées par les médecins, le volume des services offerts et le revenu des médecins. Pour ce faire, j’ai utilisé l’estimateur de la méthode des moments simulés. Les résultats montrent que les élasticités-prix direct de substitution sont élevées et significativement positives, représentant une tendance des médecins à accroitre le volume du service dont le prix a connu la plus forte augmentation. Les élasticitésprix croisées de substitution sont également élevées mais négatives. Par ailleurs, il existe un effet de revenu associé à l’augmentation des tarifs. J’ai utilisé les paramètres estimés du modèle structurel pour simuler une hausse générale de prix des services de 32%. Les résultats montrent que les médecins devraient réduire le nombre total d’heures travaillées (élasticité moyenne de -0,02) ainsi que les heures cliniques travaillées (élasticité moyenne de -0.07). Ils devraient aussi réduire le volume de services offerts (élasticité moyenne de -0.05). Troisièmement, j’ai exploité le lien naturel existant entre le revenu d’un médecin payé à l’acte et sa productivité afin d’établir le profil de productivité des médecins. Pour ce faire, j’ai modifié la spécification du modèle pour prendre en compte la relation entre la productivité d’un médecin et son expérience. J’estime l’équation de revenu en utilisant des données de panel asymétrique et en corrigeant le caractère non-aléatoire des observations manquantes à l’aide d’un modèle de sélection. Les résultats suggèrent que le profil de productivité est une fonction croissante et concave de l’expérience. Par ailleurs, ce profil est robuste à l’utilisation de l’expérience effective (la quantité de service produit) comme variable de contrôle et aussi à la suppression d’hypothèse paramétrique. De plus, si l’expérience du médecin augmente d’une année, il augmente la production de services de 1003 dollar CAN. J’ai utilisé les paramètres estimés du modèle pour calculer le ratio de remplacement : le nombre de médecins inexpérimentés qu’il faut pour remplacer un médecin expérimenté. Ce ratio de remplacement est de 1,2.
Resumo:
Abstract not available
Resumo:
A number of research groups are now developing and using finite volume (FV) methods for computational solid mechanics (CSM). These methods are proving to be equivalent and in some cases superior to their finite element (FE) counterparts. In this paper we will describe a vertex-based FV method with arbitrarily structured meshes, for modelling the elasto-plastic deformation of solid materials undergoing small strains in complex geometries. Comparisons with rational FE methods will be given.
Resumo:
The central product of the DRAMA (Dynamic Re-Allocation of Meshes for parallel Finite Element Applications) project is a library comprising a variety of tools for dynamic re-partitioning of unstructured Finite Element (FE) applications. The input to the DRAMA library is the computational mesh, and corresponding costs, partitioned into sub-domains. The core library functions then perform a parallel computation of a mesh re-allocation that will re-balance the costs based on the DRAMA cost model. We discuss the basic features of this cost model, which allows a general approach to load identification, modelling and imbalance minimisation. Results from crash simulations are presented which show the necessity for multi-phase/multi-constraint partitioning components.
Resumo:
The protein lysate array is an emerging technology for quantifying the protein concentration ratios in multiple biological samples. It is gaining popularity, and has the potential to answer questions about post-translational modifications and protein pathway relationships. Statistical inference for a parametric quantification procedure has been inadequately addressed in the literature, mainly due to two challenges: the increasing dimension of the parameter space and the need to account for dependence in the data. Each chapter of this thesis addresses one of these issues. In Chapter 1, an introduction to the protein lysate array quantification is presented, followed by the motivations and goals for this thesis work. In Chapter 2, we develop a multi-step procedure for the Sigmoidal models, ensuring consistent estimation of the concentration level with full asymptotic efficiency. The results obtained in this chapter justify inferential procedures based on large-sample approximations. Simulation studies and real data analysis are used to illustrate the performance of the proposed method in finite-samples. The multi-step procedure is simpler in both theory and computation than the single-step least squares method that has been used in current practice. In Chapter 3, we introduce a new model to account for the dependence structure of the errors by a nonlinear mixed effects model. We consider a method to approximate the maximum likelihood estimator of all the parameters. Using the simulation studies on various error structures, we show that for data with non-i.i.d. errors the proposed method leads to more accurate estimates and better confidence intervals than the existing single-step least squares method.
Resumo:
Aim The spread of non-indigenous species in marine ecosystems world-wide is one of today's most serious environmental concerns. Using mechanistic modelling, we investigated how global change relates to the invasion of European coasts by a non-native marine invertebrate, the Pacific oyster Crassostrea gigas. Location Bourgneuf Bay on the French Atlantic coast was considered as the northern boundary of C. gigas expansion at the time of its introduction to Europe in the 1970s. From this latitudinal reference, variations in the spatial distribution of the C. gigas reproductive niche were analysed along the north-western European coast from Gibraltar to Norway. Methods The effects of environmental variations on C. gigas physiology and phenology were studied using a bioenergetics model based on Dynamic Energy Budget theory. The model was forced with environmental time series including in situ phytoplankton data, and satellite data of sea surface temperature and suspended particulate matter concentration. Results Simulation outputs were successfully validated against in situ oyster growth data. In Bourgneuf Bay, the rise in seawater temperature and phytoplankton concentration has increased C. gigas reproductive effort and led to precocious spawning periods since the 1960s. At the European scale, seawater temperature increase caused a drastic northward shift (1400 km within 30 years) in the C. gigas reproductive niche and optimal thermal conditions for early life stage development. Main conclusions We demonstrated that the poleward expansion of the invasive species C. gigas is related to global warming and increase in phytoplankton abundance. The combination of mechanistic bioenergetics modelling with in situ and satellite environmental data is a valuable framework for ecosystem studies. It offers a generic approach to analyse historical geographical shifts and to predict the biogeographical changes expected to occur in a climate-changing world.
Resumo:
Agricultural land has been identified as a potential source of greenhouse gas emissions offsets through biosequestration in vegetation and soil. In the extensive grazing land of Australia, landholders may participate in the Australian Government’s Emissions Reduction Fund and create offsets by reducing woody vegetation clearing and allowing native woody plant regrowth to grow. This study used bioeconomic modelling to evaluate the trade-offs between an existing central Queensland grazing operation, which has been using repeated tree clearing to maintain pasture growth, and an alternative carbon and grazing enterprise in which tree clearing is reduced and the additional carbon sequestered in trees is sold. The results showed that ceasing clearing in favour of producing offsets produces a higher net present value over 20 years than the existing cattle enterprise at carbon prices, which are close to current (2015) market levels (~$13 t–1 CO2-e). However, by modifying key variables, relative profitability did change. Sensitivity analysis evaluated key variables, which determine the relative profitability of carbon and cattle. In order of importance these were: the carbon price, the gross margin of cattle production, the severity of the tree–grass relationship, the area of regrowth retained, the age of regrowth at the start of the project, and to a lesser extent the cost of carbon project administration, compliance and monitoring. Based on the analysis, retaining regrowth to generate carbon income may be worthwhile for cattle producers in Australia, but careful consideration needs to be given to the opportunity cost of reduced cattle income.
Resumo:
A smart solar photovoltaic grid system is an advent of innovation coherence of information and communications technology (ICT) with power systems control engineering via the internet [1]. This thesis designs and demonstrates a smart solar photovoltaic grid system that is selfhealing, environmental and consumer friendly, but also with the ability to accommodate other renewable sources of energy generation seamlessly, creating a healthy competitive energy industry and optimising energy assets efficiency. This thesis also presents the modelling of an efficient dynamic smart solar photovoltaic power grid system by exploring the maximum power point tracking efficiency, optimisation of the smart solar photovoltaic array through modelling and simulation to improve the quality of design for the solar photovoltaic module. In contrast, over the past decade quite promising results have been published in literature, most of which have not addressed the basis of the research questions in this thesis. The Levenberg-Marquardt and sparse based algorithms have proven to be very effective tools in helping to improve the quality of design for solar photovoltaic modules, minimising the possible relative errors in this thesis. Guided by theoretical and analytical reviews in literature, this research has carefully chosen the MatLab/Simulink software toolbox for modelling and simulation experiments performed on the static smart solar grid system. The auto-correlation coefficient results obtained from the modelling experiments give an accuracy of 99% with negligible mean square error (MSE), root mean square error (RMSE) and standard deviation. This thesis further explores the design and implementation of a robust real-time online solar photovoltaic monitoring system, establishing a comparative study of two solar photovoltaic tracking systems which provide remote access to the harvested energy data. This research made a landmark innovation in designing and implementing a unique approach for online remote access solar photovoltaic monitoring systems providing updated information of the energy produced by the solar photovoltaic module at the site location. In addressing the challenge of online solar photovoltaic monitoring systems, Darfon online data logger device has been systematically integrated into the design for a comparative study of the two solar photovoltaic tracking systems examined in this thesis. The site location for the comparative study of the solar photovoltaic tracking systems is at the National Kaohsiung University of Applied Sciences, Taiwan, R.O.C. The overall comparative energy output efficiency of the azimuthal-altitude dual-axis over the 450 stationary solar photovoltaic monitoring system as observed at the research location site is about 72% based on the total energy produced, estimated money saved and the amount of CO2 reduction achieved. Similarly, in comparing the total amount of energy produced by the two solar photovoltaic tracking systems, the overall daily generated energy for the month of July shows the effectiveness of the azimuthal-altitude tracking systems over the 450 stationary solar photovoltaic system. It was found that the azimuthal-altitude dual-axis tracking systems were about 68.43% efficient compared to the 450 stationary solar photovoltaic systems. Lastly, the overall comparative hourly energy efficiency of the azimuthal-altitude dual-axis over the 450 stationary solar photovoltaic energy system was found to be 74.2% efficient. Results from this research are quite promising and significant in satisfying the purpose of the research objectives and questions posed in the thesis. The new algorithms introduced in this research and the statistical measures applied to the modelling and simulation of a smart static solar photovoltaic grid system performance outperformed other previous works in reviewed literature. Based on this new implementation design of the online data logging systems for solar photovoltaic monitoring, it is possible for the first time to have online on-site information of the energy produced remotely, fault identification and rectification, maintenance and recovery time deployed as fast as possible. The results presented in this research as Internet of things (IoT) on smart solar grid systems are likely to offer real-life experiences especially both to the existing body of knowledge and the future solar photovoltaic energy industry irrespective of the study site location for the comparative solar photovoltaic tracking systems. While the thesis has contributed to the smart solar photovoltaic grid system, it has also highlighted areas of further research and the need to investigate more on improving the choice and quality design for solar photovoltaic modules. Finally, it has also made recommendations for further research in the minimization of the absolute or relative errors in the quality and design of the smart static solar photovoltaic module.
Resumo:
Determining effective hydraulic, thermal, mechanical and electrical properties of porous materials by means of classical physical experiments is often time-consuming and expensive. Thus, accurate numerical calculations of material properties are of increasing interest in geophysical, manufacturing, bio-mechanical and environmental applications, among other fields. Characteristic material properties (e.g. intrinsic permeability, thermal conductivity and elastic moduli) depend on morphological details on the porescale such as shape and size of pores and pore throats or cracks. To obtain reliable predictions of these properties it is necessary to perform numerical analyses of sufficiently large unit cells. Such representative volume elements require optimized numerical simulation techniques. Current state-of-the-art simulation tools to calculate effective permeabilities of porous materials are based on various methods, e.g. lattice Boltzmann, finite volumes or explicit jump Stokes methods. All approaches still have limitations in the maximum size of the simulation domain. In response to these deficits of the well-established methods we propose an efficient and reliable numerical method which allows to calculate intrinsic permeabilities directly from voxel-based data obtained from 3D imaging techniques like X-ray microtomography. We present a modelling framework based on a parallel finite differences solver, allowing the calculation of large domains with relative low computing requirements (i.e. desktop computers). The presented method is validated in a diverse selection of materials, obtaining accurate results for a large range of porosities, wider than the ranges previously reported. Ongoing work includes the estimation of other effective properties of porous media.
Resumo:
This research investigated the simulation model behaviour of a traditional and combined discrete event as well as agent based simulation models when modelling human reactive and proactive behaviour in human centric complex systems. A departmental store was chosen as human centric complex case study where the operation system of a fitting room in WomensWear department was investigated. We have looked at ways to determine the efficiency of new management policies for the fitting room operation through simulating the reactive and proactive behaviour of staff towards customers. Once development of the simulation models and their verification had been done, we carried out a validation experiment in the form of a sensitivity analysis. Subsequently, we executed a statistical analysis where the mixed reactive and proactive behaviour experimental results were compared with some reactive experimental results from previously published works. Generally, this case study discovered that simple proactive individual behaviour could be modelled in both simulation models. In addition, we found the traditional discrete event model performed similar in the simulation model output compared to the combined discrete event and agent based simulation when modelling similar human behaviour.
Resumo:
Doutoramento em Engenharia Florestal e dos Recursos Naturais - Instituto Superior de Agronomia - UL
Resumo:
Adaptability and invisibility are hallmarks of modern terrorism, and keeping pace with its dynamic nature presents a serious challenge for societies throughout the world. Innovations in computer science have incorporated applied mathematics to develop a wide array of predictive models to support the variety of approaches to counterterrorism. Predictive models are usually designed to forecast the location of attacks. Although this may protect individual structures or locations, it does not reduce the threat—it merely changes the target. While predictive models dedicated to events or social relationships receive much attention where the mathematical and social science communities intersect, models dedicated to terrorist locations such as safe-houses (rather than their targets or training sites) are rare and possibly nonexistent. At the time of this research, there were no publically available models designed to predict locations where violent extremists are likely to reside. This research uses France as a case study to present a complex systems model that incorporates multiple quantitative, qualitative and geospatial variables that differ in terms of scale, weight, and type. Though many of these variables are recognized by specialists in security studies, there remains controversy with respect to their relative importance, degree of interaction, and interdependence. Additionally, some of the variables proposed in this research are not generally recognized as drivers, yet they warrant examination based on their potential role within a complex system. This research tested multiple regression models and determined that geographically-weighted regression analysis produced the most accurate result to accommodate non-stationary coefficient behavior, demonstrating that geographic variables are critical to understanding and predicting the phenomenon of terrorism. This dissertation presents a flexible prototypical model that can be refined and applied to other regions to inform stakeholders such as policy-makers and law enforcement in their efforts to improve national security and enhance quality-of-life.
Resumo:
The Dirichlet process mixture model (DPMM) is a ubiquitous, flexible Bayesian nonparametric statistical model. However, full probabilistic inference in this model is analytically intractable, so that computationally intensive techniques such as Gibbs sampling are required. As a result, DPMM-based methods, which have considerable potential, are restricted to applications in which computational resources and time for inference is plentiful. For example, they would not be practical for digital signal processing on embedded hardware, where computational resources are at a serious premium. Here, we develop a simplified yet statistically rigorous approximate maximum a-posteriori (MAP) inference algorithm for DPMMs. This algorithm is as simple as DP-means clustering, solves the MAP problem as well as Gibbs sampling, while requiring only a fraction of the computational effort. (For freely available code that implements the MAP-DP algorithm for Gaussian mixtures see http://www.maxlittle.net/.) Unlike related small variance asymptotics (SVA), our method is non-degenerate and so inherits the “rich get richer” property of the Dirichlet process. It also retains a non-degenerate closed-form likelihood which enables out-of-sample calculations and the use of standard tools such as cross-validation. We illustrate the benefits of our algorithm on a range of examples and contrast it to variational, SVA and sampling approaches from both a computational complexity perspective as well as in terms of clustering performance. We demonstrate the wide applicabiity of our approach by presenting an approximate MAP inference method for the infinite hidden Markov model whose performance contrasts favorably with a recently proposed hybrid SVA approach. Similarly, we show how our algorithm can applied to a semiparametric mixed-effects regression model where the random effects distribution is modelled using an infinite mixture model, as used in longitudinal progression modelling in population health science. Finally, we propose directions for future research on approximate MAP inference in Bayesian nonparametrics.
Resumo:
The mechanical behaviour and performance of a ductile iron component is highly dependent on the local variations in solidification conditions during the casting process. Here we show a framework which combine a previously developed closed chain of simulations for cast components with a micro-scale Finite Element Method (FEM) simulation of the behaviour and performance of the microstructure. A casting process simulation, including modelling of solidification and mechanical material characterization, provides the basis for a macro-scale FEM analysis of the component. A critical region is identified to which the micro-scale FEM simulation of a representative microstructure, generated using X-ray tomography, is applied. The mechanical behaviour of the different microstructural phases are determined using a surrogate model based optimisation routine and experimental data. It is discussed that the approach enables a link between solidification- and microstructure-models and simulations of as well component as microstructural behaviour, and can contribute with new understanding regarding the behaviour and performance of different microstructural phases and morphologies in industrial ductile iron components in service.
Resumo:
Fire has been always a major concern for designers of steel and concrete structures. Designing fire-resistant structural elements is not an easy task due to several limitations such as the lack of fire-resistant construction materials. Concrete reinforcement cover and external insulation are the most commonly adopted systems to protect concrete and steel from overheating, while spalling of concrete is minimised by using HPFRC instead of standard concrete. Although these methodologies work very well for low rise concrete structures, this is not the case for high-rise and inaccessible buildings where fire loading is much longer. Fire can permanently damage structures that cost a lot of money. This is unsafe and can lead to loss of life. In this research, the author proposes a new type of main reinforcement for concrete structures which can provide better fire-resistance than steel or FRP re-bars. This consists of continuous braided fibre rope, generally made from fire-resistant materials such as carbon or glass fibre. These fibres have excellent tensile strengths, sometimes in excess of ten times greater than steel. In addition to fire-resistance, these ropes can produce lighter and corrosive resistant structures. Avoiding the use of expensive resin binders, fibres are easily bound together using braiding techniques, ensuring that tensile stress is evenly distributed throughout the reinforcement. In order to consider braided ropes as a form of reinforcement it is first necessary to establish the mechanical performance at room temperature and investigate the pull-out resistance for both unribbed and ribbed ropes. Ribbing of ropes was achieved by braiding the rope over a series of glass beads. Adhesion between the rope and concrete was drastically improved due to ribbing, and further improved by pre-stressing ropes and reducing the slacked fibres. Two types of material have been considered for the ropes: carbon and aramid. An implicit finite element approach is proposed to model braided fibres using Total Lagrangian formulation, based on the theory of small strains and large rotations. Modelling tows and strands as elastic transversely isotropic materials was a good assumption when stiff and brittle fibres such as carbon and glass fibres are considered. The rope-to-concrete and strand-to-strand bond interaction/adhesion was numerically simulated using newly proposed hierarchical higher order interface elements. Elastic and linear damage cohesive models were used effectively to simulate non-penetrative 'free' sliding interaction between strands, and the adhesion between ropes and concrete respectively. Numerical simulation showed similar de-bonding features when compared with experimental pull-out results of braided ribbed rope reinforced concrete.