997 resultados para Bienaymé-Galton-Watson process
Resumo:
There has been a demand for uniform CAD standards in the construction industry ever since the large-scale introduction of computer aided design systems in the late 1980s. While some standards have been widely adopted without much formal effort, other standards have failed to gain support even though considerable resources have been allocated for the purpose. Establishing a standard concerning building information modeling has been one particularly active area of industry development and scientific interest within recent years. In this paper, four different standards are discussed as cases: the IGES and DXF/DWG standards for representing the graphics in 2D drawings, the ISO 13567 standard for the structuring of building information on layers, and the IFC standard for building product models. Based on a literature study combined with two qualitative interview studies with domain experts, a process model is proposed to describe and interpret the contrasting histories of past CAD standardisation processes.
Resumo:
This study contributes to our knowledge of how information contained in financial statements is interpreted and priced by the stock market in two aspects. First, the empirical findings indicate that investors interpret some of the information contained in new financial statements in the context of the information of prior financial statements. Second, two central hypotheses offered in earlier literature to explain the significant connection between publicly available financial statement information and future abnormal returns, that the signals proxy for risk and that the information is priced with a delay, are evaluated utilizing a new methodology. It is found that the mentioned significant connection for some financial statement signals can be explained by that the signals proxy for risk and for other financial statement signals by that the information contained in the signals is priced with a delay.
Resumo:
One of the foremost design considerations in microelectronics miniaturization is the use of embedded passives which provide practical solution. In a typical circuit, over 80 percent of the electronic components are passives such as resistors, inductors, and capacitors that could take up to almost 50 percent of the entire printed circuit board area. By integrating passive components within the substrate instead of being on the surface, embedded passives reduce the system real estate, eliminate the need for discrete and assembly, enhance electrical performance and reliability, and potentially reduce the overall cost. Moreover, it is lead free. Even with these advantages, embedded passive technology is at a relatively immature stage and more characterization and optimization are needed for practical applications leading to its commercialization.This paper presents an entire process from design and fabrication to electrical characterization and reliability test of embedded passives on multilayered microvia organic substrate. Two test vehicles focusing on resistors and capacitors have been designed and fabricated. Embedded capacitors in this study are made with polymer/ceramic nanocomposite (BaTiO3) material to take advantage of low processing temperature of polymers and relatively high dielectric constant of ceramics and the values of these capacitors range from 50 pF to 1.5 nF with capacitance per area of approximately 1.5 nF/cm(2). Limited high frequency measurement of these capacitors was performed. Furthermore, reliability assessments of thermal shock and temperature humidity tests based on JEDEC standards were carried out. Resistors used in this work have been of three types: 1) carbon ink based polymer thick film (PTF), 2) resistor foils with known sheet resistivities which are laminated to printed wiring board (PWB) during a sequential build-up (SBU) process and 3) thin-film resistor plating by electroless method. Realization of embedded resistors on conventional board-level high-loss epoxy (similar to 0.015 at 1 GHz) and proposed low-loss BCB dielectric (similar to 0.0008 at > 40 GHz) has been explored in this study. Ni-P and Ni-W-P alloys were plated using conventional electroless plating, and NiCr and NiCrAlSi foils were used for the foil transfer process. For the first time, Benzocyclobutene (BCB) has been proposed as a board level dielectric for advanced System-on-Package (SOP) module primarily due to its attractive low-loss (for RF application) and thin film (for high density wiring) properties.Although embedded passives are more reliable by eliminating solder joint interconnects, they also introduce other concerns such as cracks, delamination and component instability. More layers may be needed to accommodate the embedded passives, and various materials within the substrate may cause significant thermo -mechanical stress due to coefficient of thermal expansion (CTE) mismatch. In this work, numerical models of embedded capacitors have been developed to qualitatively examine the effects of process conditions and electrical performance due to thermo-mechanical deformations.Also, a prototype working product with the board level design including features of embedded resistors and capacitors are underway. Preliminary results of these are presented.
Resumo:
As-deposited high Tc superconducting Y1Ba2Cu3O7−x films with zero resistance temperatures of similar, equals89 K and critical current densities about 0.7×106 A/cm2 at 77 K have been reproducibly fabricated at a substrate holder temperature at 650°C, using pulsed laser deposition, without post-annealing. One key to these results is the injection of gaseous oxygen into laser produced plume just in front of the target. In this way, the correct amount of oxygen is incorporated into the as-grown film so that post-deposition treatment becomes unnecessary. Axial ion channeling in these as-deposit high Tc superconducting films on (100) SrTiO3 and X-ray photoelectron spectroscopy (XPS) on the film surfaces were performed. Angular yield profile near the film surface for Ba, and the surface peak intensity were measured using 3 MeV He ions. For channeling normal to the substrate a minimum yield of 7%, compared to similar, equals3% for single crystals, was obtained. The results of ion channeling and XPS studies indicate that the as-deposited films have good crystallinity as well as toichiometry to within similar, equals1 nm of the film surface. The in-situ growth of such high Tc and Jc films is an important step in the use of the laser deposition technique to fabricate multilayer structures and the surface perfection is of importance in tunneling devices such as Josephson junctions.
Resumo:
The Occurrence of the Norrish type I a-cleavage process in some thio compounds has been examined by using the MIND013 method and employing the configuration interaction. Results reveal that where the radiationless process is not efficient, thio compounds can undergo photodissociation into radicals in their lowest triplet and singlet excited states. The activation barriers in all these cases arise from an avoided crossing between two states of different symmetries. The calculations of activation barriers by the CNDO-CI and MINDO-CI procedures reveal that the MINDO-CI method leads to realistic values of the activation energies.
Resumo:
Extensive research work has been carried out in the last few years on the synthesis and characterization of several families of open-framework materials, including aluminosilicates,[1] phosphates,[2] and carboxylates.[3] These studies have shown the occurrence of a variety of three dimensional (3D) architectures containing channels and other features.