929 resultados para Biased correlated random walk


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fundamental problem in the analysis of structured relational data like graphs, networks, databases, and matrices is to extract a summary of the common structure underlying relations between individual entities. Relational data are typically encoded in the form of arrays; invariance to the ordering of rows and columns corresponds to exchangeable arrays. Results in probability theory due to Aldous, Hoover and Kallenberg show that exchangeable arrays can be represented in terms of a random measurable function which constitutes the natural model parameter in a Bayesian model. We obtain a flexible yet simple Bayesian nonparametric model by placing a Gaussian process prior on the parameter function. Efficient inference utilises elliptical slice sampling combined with a random sparse approximation to the Gaussian process. We demonstrate applications of the model to network data and clarify its relation to models in the literature, several of which emerge as special cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Band alignment of resistive random access memory (RRAM) switching material Ta2O5 and different metal electrode materials was examined using high-resolution X-ray photoelectron spectroscopy. Schottky and hole barrier heights at the interface between electrode and Ta2O 5 were obtained, where the electrodes consist of materials with low to high work function (Φ m, v a c from 4.06 to 5.93 eV). Effective metal work functions were extracted to study the Fermi level pinning effect and to discuss the dominant conduction mechanism. An accurate band alignment between electrodes and Ta2O5 is obtained and can be used for RRAM electrode engineering and conduction mechanism study. © 2013 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the probability density function of the energy of a random dynamical system subjected to harmonic excitation. It is shown that if the natural frequencies and mode shapes of the system conform to the Gaussian Orthogonal Ensemble, then under common types of loading the distribution of the energy of the response is approximately lognormal, providing the modal overlap factor is high (typically greater than two). In contrast, it is shown that the response of a system with Poisson natural frequencies is not approximately lognormal. Numerical simulations are conducted on a plate system to validate the theoretical findings and good agreement is obtained. Simulations are also conducted on a system made from two plates connected with rotational springs to demonstrate that the theoretical findings can be extended to a built-up system. The work provides a theoretical justification of the commonly used empirical practice of assuming that the energy response of a random system is lognormal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expectations about the magnitude of impending pain exert a substantial effect on subsequent perception. However, the neural mechanisms that underlie the predictive processes that modulate pain are poorly understood. In a combined behavioral and high-density electrophysiological study we measured anticipatory neural responses to heat stimuli to determine how predictions of pain intensity, and certainty about those predictions, modulate brain activity and subjective pain ratings. Prior to receiving randomized laser heat stimuli at different intensities (low, medium or high) subjects (n=15) viewed cues that either accurately informed them of forthcoming intensity (certain expectation) or not (uncertain expectation). Pain ratings were biased towards prior expectations of either high or low intensity. Anticipatory neural responses increased with expectations of painful vs. non-painful heat intensity, suggesting the presence of neural responses that represent predicted heat stimulus intensity. These anticipatory responses also correlated with the amplitude of the Laser-Evoked Potential (LEP) response to painful stimuli when the intensity was predictable. Source analysis (LORETA) revealed that uncertainty about expected heat intensity involves an anticipatory cortical network commonly associated with attention (left dorsolateral prefrontal, posterior cingulate and bilateral inferior parietal cortices). Relative certainty, however, involves cortical areas previously associated with semantic and prospective memory (left inferior frontal and inferior temporal cortex, and right anterior prefrontal cortex). This suggests that biasing of pain reports and LEPs by expectation involves temporally precise activity in specific cortical networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Predicting the response of a structure following an impact is of interest in situations where parts of a complex assembly may come into contact. Standard approaches are based on the knowledge of the impulse response function, requiring the knowledge of the modes and the natural frequencies of the structure. In real engineering structures the statistics of higher natural frequencies follows those of the Gaussian Orthogonal Ensemble, this allows the application of random point process theory to get a mean impulse response function by the knowledge of the modal density of the structure. An ensemble averaged time history for both the response and the impact force can be predicted. Once the impact characteristics are known in the time domain, a simple Fourier Transform allows the frequency range of the impact excitation to be calculated. Experimental and numerical results for beams, plates, and cylinders are presented to confirm the validity of the method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The task of word-level confidence estimation (CE) for automatic speech recognition (ASR) systems stands to benefit from the combination of suitably defined input features from multiple information sources. However, the information sources of interest may not necessarily operate at the same level of granularity as the underlying ASR system. The research described here builds on previous work on confidence estimation for ASR systems using features extracted from word-level recognition lattices, by incorporating information at the sub-word level. Furthermore, the use of Conditional Random Fields (CRFs) with hidden states is investigated as a technique to combine information for word-level CE. Performance improvements are shown using the sub-word-level information in linear-chain CRFs with appropriately engineered feature functions, as well as when applying the hidden-state CRF model at the word level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of random dynamic systems usually requires the definition of an ensemble of structures and the solution of the eigenproblem for each member of the ensemble. If the process is carried out using a conventional numerical approach, the computational cost becomes prohibitive for complex systems. In this work, an alternative numerical method is proposed. The results for the response statistics are compared with values obtained from a detailed stochastic FE analysis of plates. The proposed method seems to capture the statistical behaviour of the response with a reduced computational cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is about detecting bipedal motion in video sequences by using point trajectories in a framework of classification. Given a number of point trajectories, we find a subset of points which are arising from feet in bipedal motion by analysing their spatio-temporal correlation in a pairwise fashion. To this end, we introduce probabilistic trajectories as our new features which associate each point over a sufficiently long time period in the presence of noise. They are extracted from directed acyclic graphs whose edges represent temporal point correspondences and are weighted with their matching probability in terms of appearance and location. The benefit of the new representation is that it practically tolerates inherent ambiguity for example due to occlusions. We then learn the correlation between the motion of two feet using the probabilistic trajectories in a decision forest classifier. The effectiveness of the algorithm is demonstrated in experiments on image sequences captured with a static camera, and extensions to deal with a moving camera are discussed. © 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gibel carp ( Carassius auratus gibelio) is a uniquely gynogenetic species with a minor ratio of males in natural habitats, but its male origin and sex determination mechanisms have been unknown. In this study, a male-biased mutant family was discovered from the gynogenetic gibel carp, and a male-specific SCAR marker was identified from the mutant family. Normal spermatogenesis was observed in the male testes by immuno. fluorescence histochemistry. Nearly identical AFLP profiles were observed between males and females, but a male-specific 86 bp AFLP fragment was screened by sex-pool bulked segregant analysis and individual screening. Based on the male-specific AFLP fragment, a total of 579 bp sequences were cloned by genome walking. Subsequently, a male-specific SCAR marker was designed, and the male-specific DNA fragment was confirmed to be steadily transmitted to the next generation and consistently detected only in males. (C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present Random Partition Kernels, a new class of kernels derived by demonstrating a natural connection between random partitions of objects and kernels between those objects. We show how the construction can be used to create kernels from methods that would not normally be viewed as random partitions, such as Random Forest. To demonstrate the potential of this method, we propose two new kernels, the Random Forest Kernel and the Fast Cluster Kernel, and show that these kernels consistently outperform standard kernels on problems involving real-world datasets. Finally, we show how the form of these kernels lend themselves to a natural approximation that is appropriate for certain big data problems, allowing $O(N)$ inference in methods such as Gaussian Processes, Support Vector Machines and Kernel PCA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copyright 2014 by the author(s). We present a nonparametric prior over reversible Markov chains. We use completely random measures, specifically gamma processes, to construct a countably infinite graph with weighted edges. By enforcing symmetry to make the edges undirected we define a prior over random walks on graphs that results in a reversible Markov chain. The resulting prior over infinite transition matrices is closely related to the hierarchical Dirichlet process but enforces reversibility. A reinforcement scheme has recently been proposed with similar properties, but the de Finetti measure is not well characterised. We take the alternative approach of explicitly constructing the mixing measure, which allows more straightforward and efficient inference at the cost of no longer having a closed form predictive distribution. We use our process to construct a reversible infinite HMM which we apply to two real datasets, one from epigenomics and one ion channel recording.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the subexponential prefactor to the random-coding bound for a given rate. Using a refinement of Gallager's bounding techniques, an alternative proof of a recent result by Altuǧ and Wagner is given, and the result is extended to the setting of mismatched decoding. © 2013 IEEE.