942 resultados para Banda filarmónica


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis proposes the specification and performance analysis of a real-time communication mechanism for IEEE 802.11/11e standard. This approach is called Group Sequential Communication (GSC). The GSC has a better performance for dealing with small data packets when compared to the HCCA mechanism by adopting a decentralized medium access control using a publish/subscribe communication scheme. The main objective of the thesis is the HCCA overhead reduction of the Polling, ACK and QoS Null frames exchanged between the Hybrid Coordinator and the polled stations. The GSC eliminates the polling scheme used by HCCA scheduling algorithm by using a Virtual Token Passing procedure among members of the real-time group to whom a high-priority and sequential access to communication medium is granted. In order to improve the reliability of the mechanism proposed into a noisy channel, it is presented an error recovery scheme called second chance algorithm. This scheme is based on block acknowledgment strategy where there is a possibility of retransmitting when missing real-time messages. Thus, the GSC mechanism maintains the real-time traffic across many IEEE 802.11/11e devices, optimized bandwidth usage and minimal delay variation for data packets in the wireless network. For validation purpose of the communication scheme, the GSC and HCCA mechanisms have been implemented in network simulation software developed in C/C++ and their performance results were compared. The experiments show the efficiency of the GSC mechanism, especially in industrial communication scenarios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main purpose of this work was the development of ceramic dielectric substrates of bismuth niobate (BiNbO4) doped with vanadium pentoxide (V2O5), with high permittivity, used in the construction of microstrip patch antennas with applications in wireless communications systems. The high electrical permittivity of the ceramic substrate provided a reduction of the antenna dimensions. The numerical results obtained in the simulations and the measurements performed with the microstrip patch antennas showed good agreement. These antennas can be used in wireless communication systems in various frequency bands. Results were satisfactory for antennas operating at frequencies in the S band, in the range between 2.5 GHz and 3.0 GHz.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In general, the materials used as substrates in the project of microstrip antennas are: isotropic, anisotropic dielectrics and ferrimagnetic materials (magnetic anisotropy). The use of ferrimagnetic materials as substrates in microstrip patch antennas has been concentrated on the analysis of antennas with circular and rectangular patches. However, a new class of materials, called metamaterials, has been currently the focus of a great deal of interest. These materials exhibit bianisotropic characteristics, with permittivity and permeability tensors. The main objective of this work is to develop a theoretical and numerical analysis for the radiation characteristics of annular ring microstrip antennas, using ferrites and metamaterials as substrates. The full wave analysis is performed in the Hankel transform domain through the application of the Hertz vector potentials. Considering the definition of the Hertz potentials and imposing the boundary conditions, the dyadic Green s function components are obtained relating the surface current density components at the plane of the patch to the electric field tangential components. Then, Galerkin s method is used to obtain a system of matrix equations, whose solution gives the antenna resonant frequency. From this modeling, it is possible to obtain numerical results for the resonant frequency, radiation pattern, return loss, and antenna bandwidth as a function of the annular ring physical parameters, for different configurations and substrates. The theoretical analysis was developed for annular ring microstrip antennas on a double ferrimagnetic/isotropic dielectric substrate or metamaterial/isotropic dielectric substrate. Also, the analysis for annular ring microstrip antennas on a single ferrimagnetic or metamaterial layer and for suspended antennas can be performed as particular cases

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation describes the use of new Technologies of the Areas of Telecommunications, Networks and Industrial Automation for increase of the Operational Safety and obtaining of Operational Improvements in the Platforms Petroliferous Offshore. The presented solution represents the junction of several modules of these areas, making possible the Supervision and Contrai of the Platforms Petroliferous Offshore starting from an Station Onshore, in way similar to a remote contral, by virtue of the visualization possibility and audition of the operational area through cameras and microphones, looking the operator of the system to be "present" in the platform. This way, it diminishes the embarked people's need, increasing the Operational Safety. As consequence, we have the obtaining of Operational Improvements, by virtue of the use of a digital link of large band it releases multi-service. In this link traffic simultaneously digital signs of data (Ethernet Network), telephony (Phone VoIP), image and sound

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents the development of new microwaves structures, filters and high gain antenna, through the cascading of frequency selective surfaces, which uses fractals Dürer and Minkowski patches as elements, addition of an element obtained from the combination of the other two simple the cross dipole and the square spiral. Frequency selective surfaces (FSS) includes a large area of Telecommunications and have been widely used due to its low cost, low weight and ability to integrate with others microwaves circuits. They re especially important in several applications, such as airplane, antennas systems, radomes, rockets, missiles, etc. FSS applications in high frequency ranges have been investigated, as well as applications of cascading structures or multi-layer, and active FSS. In this work, we present results for simulated and measured transmission characteristics of cascaded structures (multilayer), aiming to investigate the behavior of the operation in terms of bandwidth, one of the major problems presented by frequency selective surfaces. Comparisons are made with simulated results, obtained using commercial software such as Ansoft DesignerTM v3 and measured results in the laboratory. Finally, some suggestions are presented for future works on this subject

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents a theoretical, numerical and computation analysis of parameters of a rectangular microstrip antenna with metamaterial substrate, fin line as a coupler and also integrated devices like integrated filter antenna. It is applied theory to full-wave of Transverse Transmission Line - TTL method, to characterize the magnitude of the substrate and obtain the general equations of the electromagnetic fields. About the metamaterial, they are characterized by permittivity and permeability tensor, reaching to the general equations for the electromagnetic fields of the antenna. It is presented a study about main representation of PBG(Photonic Band Gap) material and its applied for a specific configuration. A few parameters are simulated some structures in order to reduce the physical dimensions and increase the bandwidth. The results are presented through graphs. The theoretical and computational analysis of this work have shown accurate and relatively concise. Conclusions are drawn and suggestions for future work

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The frequency selective surfaces, or FSS (Frequency Selective Surfaces), are structures consisting of periodic arrays of conductive elements, called patches, which are usually very thin and they are printed on dielectric layers, or by openings perforated on very thin metallic surfaces, for applications in bands of microwave and millimeter waves. These structures are often used in aircraft, missiles, satellites, radomes, antennae reflector, high gain antennas and microwave ovens, for example. The use of these structures has as main objective filter frequency bands that can be broadcast or rejection, depending on the specificity of the required application. In turn, the modern communication systems such as GSM (Global System for Mobile Communications), RFID (Radio Frequency Identification), Bluetooth, Wi-Fi and WiMAX, whose services are highly demanded by society, have required the development of antennas having, as its main features, and low cost profile, and reduced dimensions and weight. In this context, the microstrip antenna is presented as an excellent choice for communications systems today, because (in addition to meeting the requirements mentioned intrinsically) planar structures are easy to manufacture and integration with other components in microwave circuits. Consequently, the analysis and synthesis of these devices mainly, due to the high possibility of shapes, size and frequency of its elements has been carried out by full-wave models, such as the finite element method, the method of moments and finite difference time domain. However, these methods require an accurate despite great computational effort. In this context, computational intelligence (CI) has been used successfully in the design and optimization of microwave planar structures, as an auxiliary tool and very appropriate, given the complexity of the geometry of the antennas and the FSS considered. The computational intelligence is inspired by natural phenomena such as learning, perception and decision, using techniques such as artificial neural networks, fuzzy logic, fractal geometry and evolutionary computation. This work makes a study of application of computational intelligence using meta-heuristics such as genetic algorithms and swarm intelligence optimization of antennas and frequency selective surfaces. Genetic algorithms are computational search methods based on the theory of natural selection proposed by Darwin and genetics used to solve complex problems, eg, problems where the search space grows with the size of the problem. The particle swarm optimization characteristics including the use of intelligence collectively being applied to optimization problems in many areas of research. The main objective of this work is the use of computational intelligence, the analysis and synthesis of antennas and FSS. We considered the structures of a microstrip planar monopole, ring type, and a cross-dipole FSS. We developed algorithms and optimization results obtained for optimized geometries of antennas and FSS considered. To validate results were designed, constructed and measured several prototypes. The measured results showed excellent agreement with the simulated. Moreover, the results obtained in this study were compared to those simulated using a commercial software has been also observed an excellent agreement. Specifically, the efficiency of techniques used were CI evidenced by simulated and measured, aiming at optimizing the bandwidth of an antenna for wideband operation or UWB (Ultra Wideband), using a genetic algorithm and optimizing the bandwidth, by specifying the length of the air gap between two frequency selective surfaces, using an optimization algorithm particle swarm

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The characteristic properties of the fractal geometry have shown to be very useful for the construction of filters, frequency selective surfaces, synchronized circuits and antennas, enabling optimized solutions in many different commercial uses at microwaves frequency band. The fractal geometry is included in the technology of the microwave communication systems due to some interesting properties to the fabrication of compact devices, with higher performance in terms of bandwidth, as well as multiband behavior. This work describes the design, fabrication and measurement procedures for the Koch quasi-fractal monopoles, with 1 and 2 iteration levels, in order to investigate the bandwidth behavior of planar antennas, from the use of quasi-fractal elements printed on their rectangular patches. The electromagnetic effect produced by the variation of the fractal iterations and the miniaturization of the structures is analyzed. Moreover, a parametric study is performed to verify the bandwidth behavior, not only at the return loss but also in terms of SWR. Experimental results were obtained through the accomplishment of measurements with the aid of a vetorial network analyzer and compared to simulations performed using the Ansoft HFSS software. Finally, some proposals for future works are presented

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstrip antennas are in constant evidence in current researches due to several advantages that it presents. Fractal geometry coupled with good performance and convenience of the planar structures are an excellent combination for design and analysis of structures with ever smaller features and multi-resonant and broadband. This geometry has been applied in such patch microstrip antennas to reduce its size and highlight its multi-band behavior. Compared with the conventional microstrip antennas, the quasifractal patch antennas have lower frequencies of resonance, enabling the manufacture of more compact antennas. The aim of this work is the design of quasi-fractal patch antennas through the use of Koch and Minkowski fractal curves applied to radiating and nonradiating antenna s edges of conventional rectangular patch fed by microstrip inset-fed line, initially designed for the frequency of 2.45 GHz. The inset-fed technique is investigated for the impedance matching of fractal antennas, which are fed through lines of microstrip. The efficiency of this technique is investigated experimentally and compared with simulations carried out by commercial software Ansoft Designer used for precise analysis of the electromagnetic behavior of antennas by the method of moments and the neural model proposed. In this dissertation a study of literature on theory of microstrip antennas is done, the same study is performed on the fractal geometry, giving more emphasis to its various forms, techniques for generation of fractals and its applicability. This work also presents a study on artificial neural networks, showing the types/architecture of networks used and their characteristics as well as the training algorithms that were used for their implementation. The equations of settings of the parameters for networks used in this study were derived from the gradient method. It will also be carried out research with emphasis on miniaturization of the proposed new structures, showing how an antenna designed with contours fractals is capable of a miniaturized antenna conventional rectangular patch. The study also consists of a modeling through artificial neural networks of the various parameters of the electromagnetic near-fractal antennas. The presented results demonstrate the excellent capacity of modeling techniques for neural microstrip antennas and all algorithms used in this work in achieving the proposed models were implemented in commercial software simulation of Matlab 7. In order to validate the results, several prototypes of antennas were built, measured on a vector network analyzer and simulated in software for comparison

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the globalized world modern telecommunications have assumed key role within the company, causing a large increase in demand for the wireless technology of communication, which has been happening in recent years have greatly increased the number of applications using this technology. Due to this demand, new materials are developed to enable new control mechanisms and propagation of electromagnetic waves. The research to develop new technologies for wireless communication presents a multidisciplinary study that covers from the new geometries for passive antennas, active up to the development of materials for devices that improve the performance at the frequency range of operation. Recently, planar antennas have attracted interest due to their characteristics and advantages when compared with other types of antennas. In the area of mobile communications the need for antennas of this type has become increasingly used, due to intensive development, which needs to operate in multifrequency antennas and broadband. The microstrip antennas have narrow bandwidth due to the dielectric losses generated by irradiation. Another limitation is the degradation of the radiation pattern due to the generation of surface waves in the substrate. Some techniques have been developed to minimize this limitation of bandwidth, such as the study of type materials PBG - Photonic Band Gap, to form the dielectric material. This work has as main objective the development project of a slot resonator with multiple layers and use the type PBG substrate, which carried out the optimization from the numerical analysis and then designed the device initially proposed for the band electromagnetic spectrum between 3-9 GHz, which basically includes the band S to X. Was used as the dielectric material RT/Duroid 5870 and RT/Duroid 6010.LM where both are laminated ceramic-filled PTFE dielectric constants 2.33 and 10.2, respectively. Through an experimental investigation was conducted an analysis of the simulated versus measured by observing the behavior of the radiation characteristics from the height variation of the dielectric multilayer substrates. We also used the LTT method resonators structures rectangular slot with multiple layers of material photonic PBG in order to obtain the resonance frequency and the entire theory involving the electromagnetic parameters of the structure under consideration. xviii The analysis developed in this work was performed using the method LTT - Transverse Transmission Line, in the field of Fourier transform that uses a component propagating in the y direction (transverse to the real direction of propagation z), thus treating the general equations of the fields electric and magnetic and function. The PBG theory is applied to obtain the relative permittivity of the polarizations for the sep photonic composite substrates material. The results are obtained with the commercial software Ansoft HFSS, used for accurate analysis of the electromagnetic behavior of the planar device under study through the Finite Element Method (FEM). Numerical computational results are presented in graphical form in two and three dimensions, playing in the parameters of return loss, frequency of radiation and radiation diagram, radiation efficiency and surface current for the device under study, and have as substrates, photonic materials and had been simulated in an appropriate computational tool. With respect to the planar device design study are presented in the simulated and measured results that show good agreement with measurements made. These results are mainly in the identification of resonance modes and determining the characteristics of the designed device, such as resonant frequency, return loss and radiation pattern

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a theoretical and numerical analysis of the parameters of a rectangular microstrip antenna with metamaterial substrate. The metamaterial (MTM) theory was applied along with Transverse Transmission Line (LTT) method to characterize substrate quantities and obtain the general equations of the electromagnetic fields. A study on metamaterial theory was conducted to obtain the constructive parameters, which were characterized through permittivity and permeability tensors to arrive at a set of electromagnetic equations. Electromagnetic principes are used to obtained parameters such as complex resonance frequency, bandwidth and radiation pattern were then obtained. Different metamaterial and antenna configurations were simulated to miniaturize them physically and increase their bandwidth, the results of which are shown through graphics. The theoretical computational analysis of this work proved to be accurate when compared to other studies, and may be used for other metamaterial devices. Conclusions and suggestions for future work are also proposed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents a theoretical and numerical analysis of parameters of a rectangular microstrip antenna with bianisotropic substrate, and including simultaneously the superconducting patch. The full-wave Transverse Transmission Line - TTL method, is used to characterize these antennas. The bianisotropic substrate is characterized by the permittivity and permeability tensors, and the TTL gives the general equations of the electromagnetic fields of the antennas. The BCS theory and the two fluids model are applied to superconductors in these antennas with bianisotropic for first time. The inclusion of superconducting patch is made using the complex resistive boundary condition. The resonance complex frequency is then obtained. Are simulated some parameters of antennas in order to reduce the physical size, and increase the its bandwidth. The numerical results are presented through of graphs. The theoretical and computational analysis these works are precise and concise. Conclusions and suggestions for future works are presented

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective in this work is the analysis of resonance frequency microstrip structures with glass fiber and electromagnetic band gap (EBG/PBG) substrate and analysis of microstrip antennas with rectangular patch of superconductor of high critical temperature (HTS). In this work was used the superconductors YBCO (critical temperature of 90K), SnBaCaCuOy (critical temperature of 160K), and Sn5InCa2Ba4Cu10Oy (critical temperature of 212K) with results in Gigahertz and Terahertz. Was used microstrip antennas arrays planar and linear phase and linear phase planar with patch with superconductor. It presents a study of the major theories that explain superconductivity. In phase arrays were obtained the factors arrays for such configurations, and the criteria of phase and spacing between the elements compound in the array, which were examined in order to get a main lobe with high directivity and high gain. In the analysis we used the method of Transverse Transmission Line (TTL) used in domain of the Fourier Transform (FTD). The LTT is a full wave method, which obtains the electromagnetic field in terms of the components transverse of the structure. The addition of superconductive patch is made using the boundary condition resistive complex. Results are obtained resonance frequency as a function of the parameters of the antenna, radiation patterns of the E and H Planes, for the phase antenna arrays in linear and planar configurations, for different values of the phase and the spacing between elements

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The exponential growth in the applications of radio frequency (RF) is accompanied by great challenges as more efficient use of spectrum as in the design of new architectures for multi-standard receivers or software defined radio (SDR) . The key challenge in designing architecture of the software defined radio is the implementation of a wide-band receiver, reconfigurable, low cost, low power consumption, higher level of integration and flexibility. As a new solution of SDR design, a direct demodulator architecture, based on fiveport technology, or multi-port demodulator, has been proposed. However, the use of the five-port as a direct-conversion receiver requires an I/Q calibration (or regeneration) procedure in order to generate the in-phase (I) and quadrature (Q) components of the transmitted baseband signal. In this work, we propose to evaluate the performance of a blind calibration technique without additional knowledge about training or pilot sequences of the transmitted signal based on independent component analysis for the regeneration of I/Q five-port downconversion, by exploiting the information on the statistical properties of the three output signals