995 resultados para Axial flow compressors.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydraulic head is distributed through a medium with porous aspect. The analysis of hydraulic head from one point to another is used by the Richard's equation. This equation is equivalent to the groundwater ow equation that predicts the volumetric water contents. COMSOL 3.5 is used for computation applying Richard's equation. A rectangle of 100 meters of length and 10 meters of large (depth) with 0,1 m/s fl ux of inlet as source of our fl uid is simulated. The domain have Richards' equation model in two dimension (2D). Hydraulic head increases proportional with moisture content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tämän diplomityön tavoitteena on ollut suunnitella radiaalikompressori. Aluksi on tutustuttu radiaalikompressorissa tapahtuviin ilmiöihin, jonka jälkeen radiaalikompressori on suunniteltu. Reunaehtoina suunnittelussa olivat toimilaitteelta saatava teho 250 kW ja sen suurin pyörimisnopeus 500 Hz. Esisuunnittelu on tehty Virtaustekniikan laboratoriossa kehitetyllä CentriFlow-ohjelmalla. Juoksupyörän muoto on suunniteltu viskoosittomilla 2D-malleilla. Juoksupyörän muodon suunniittelussa on käytetty kaupallista AxCent-ohjelmaa. Juoksupyörän muoto on tarkistettu laskennallisen virtausdynamiikan avulla. Virtausmallinnuksessa käytettiin FinFlo-ohjelmaa. Suunnittelun ja mallinnuksen pohjalta valittiin kolme erilaista juoksupyörää valmistukseen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, liquid-solid flow in industrial scale is modeled using the commercial software of Computational Fluid Dynamics (CFD) ANSYS Fluent 14.5. In literature, there are few studies on liquid-solid flow in industrial scale, but any information about the particular case with modified geometry cannot be found. The aim of this thesis is to describe the strengths and weaknesses of the multiphase models, when a large-scale application is studied within liquid-solid flow, including the boundary-layer characteristics. The results indicate that the selection of the most appropriate multiphase model depends on the flow regime. Thus, careful estimations of the flow regime are recommended to be done before modeling. The computational tool is developed for this purpose during this thesis. The homogeneous multiphase model is valid only for homogeneous suspension, the discrete phase model (DPM) is recommended for homogeneous and heterogeneous suspension where pipe Froude number is greater than 1.0, while the mixture and Eulerian models are able to predict also flow regimes, where pipe Froude number is smaller than 1.0 and particles tend to settle. With increasing material density ratio and decreasing pipe Froude number, the Eulerian model gives the most accurate results, because it does not include simplifications in Navier-Stokes equations like the other models. In addition, the results indicate that the potential location of erosion in the pipe depends on material density ratio. Possible sedimentation of particles can cause erosion and increase pressure drop as well. In the pipe bend, especially secondary flows, perpendicular to the main flow, affect the location of erosion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plot-scale overland flow experiments were conducted to evaluate the efficiency of streamside management zones (SMZs) in retaining herbicides in runoff generated from silvicultural activities. Herbicide retention was evaluated for five different slopes (2, 5, 10, 15, and 20%), two cover conditions (undisturbed O horizon and raked surface), and two periods under contrasting soil moisture conditions (summer dry and winter wet season) and correlated to O horizon and site conditions. Picloram (highly soluble in water) and atrazine (moderately sorbed into soil particles) at concentrations in the range of 55 and 35 µg L-1 and kaolin clay (approximately 5 g L-1) were mixed with 13.000 liters of water and dispersed over the top of 5 x 10 m forested plots. Surface flow was collected 2, 4, 6, and 10 m below the disperser to evaluate the changes in concentration as it moved through the O horizon and surface soil horizon-mixing zone. Results showed that, on average, a 10 m long forested SMZ removed around 25% of the initial concentration of atrazine and was generally ineffective in reducing the more soluble picloram. Retention of picloram was only 6% of the applied quantity. Percentages of mass reduction by infiltration were 36% for atrazine and 20% for picloram. Stronger relationships existed between O horizon depth and atrazine retention than in any other measured variable, suggesting that better solid-solution contact associated with flow through deeper O horizons is more important than either velocity or soil moisture as a determinant of sorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tämä työ tehtiin Kone Industrial Oy:lle Major Projects yksikköön, laatuosastolle. Kone Major Projects yksikkö keskittyy erikoisiin ja suuriin hissi- ja liukuporras projekteihin. Työn tavoitteena oli luoda harmonisoitu prosessi hissikomponenttien laaduntarkkailua varten sekä tarkastella ja vertailla kustannussäästöjä, jota tällä uudella prosessilla voidaan saavuttaa. Tavoitteena oli saavuttaa 80-prosentin kustannussäästöt laatukustannuksissa uuden laatuprosessin avulla. Työn taustana ja tutkimusongelmana ovat lisääntyneet erikoisprojektit ja niiden myötä lisääntynyt laaduntarkkailun tarve. Ongelmana laaduntarkkailussa voitiin pitää harmonisoidun ja selkeän prosessin puuttumista C-prosessikomponenttien valmistuksessa. Lisäksi kehitysprosessin aikana luotiin vanhojen työkalujen pohjalta keskeinen laaduntarkkailutyökalu, CTQ-työkalu. Työssä käsitellään ensin Konetta yhtiönä ja selvitetään Koneen keskeisimmät prosessit työn taustaksi. Teoria osuudessa käsitellään prosessin kehitykseen liittyviä teorioita sekä yleisiä laatukäsitteitä ja esitetään teorioita laadun asemasta nykypäivänä. Lopuksi käsitellään COQ eli laatukustannusten teoriaa ja esitellään teoria PAF-analyysille, jota käytetään työssä laatukustannusten vertailuun case esimerkin avulla. Työssä kuvataan CTQ prosessin luominen alusta loppuun ja case esimerkin avulla testataan uutta CTQ prosessia pilottihankkeessa. Tässä case esimerkissä projektin bracket eli johdekiinnitysklipsi tuotetaan uuden laatuprosessin avulla sekä tehdään kustannusvertailu saman projektin toisen bracketin kanssa, joka on tuotettu ennen uuden laatuprosessin implementoimista. Työn lopputuloksena CTQ prosessi saatiin luotua ja sitä pystyttiin testaamaan käytännössä case esimerkin avulla. Tulosten perusteella voidaan sanoa, että CTQ prosessin käyttö vähentää laatukustannuksia huomattavasti ja helpottaa laadunhallintaa C-prosessikomponenttien tuotannossa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systemic blood flow (Q) was measured by echodopplercardiography in 5 normal young adult males during apnea, eupnea and tachypnea. Measurements were made in a recumbent posture at 3-min intervals. Tachypnea was attained by doubling the respiratory frequency at eupnea at a constant tidal volume. An open glottis was maintained during apnea at the resting respiratory level. The Q values were positively correlated with the respiratory frequency, decreasing from eupnea to apnea and increasing from eupnea to tachypnea (P<0.05). These data demonstrate that echodopplercardiography, a better qualified tool for this purpose, confirms the positive and progressive effects of ventilation on systemic blood flow, as suggested by previous studies based on diverse technical approaches

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present study was to validate the transit-time technique for long-term measurements of iliac and renal blood flow in rats. Flow measured with ultrasonic probes was confirmed ex vivo using excised arteries perfused at varying flow rates. An implanted 1-mm probe reproduced with accuracy different patterns of flow relative to pressure in freely moving rats and accurately quantitated the resting iliac flow value (on average 10.43 ± 0.99 ml/min or 2.78 ± 0.3 ml min-1 100 g body weight-1). The measurements were stable over an experimental period of one week but were affected by probe size (resting flows were underestimated by 57% with a 2-mm probe when compared with a 1-mm probe) and by anesthesia (in the same rats, iliac flow was reduced by 50-60% when compared to the conscious state). Instantaneous changes of iliac and renal flow during exercise and recovery were accurately measured by the transit-time technique. Iliac flow increased instantaneously at the beginning of mild exercise (from 12.03 ± 1.06 to 25.55 ± 3.89 ml/min at 15 s) and showed a smaller increase when exercise intensity increased further, reaching a plateau of 38.43 ± 1.92 ml/min at the 4th min of moderate exercise intensity. In contrast, exercise-induced reduction of renal flow was smaller and slower, with 18% and 25% decreases at mild and moderate exercise intensities. Our data indicate that transit-time flowmetry is a reliable method for long-term and continuous measurements of regional blood flow at rest and can be used to quantitate the dynamic flow changes that characterize exercise and recovery

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We determined the effect of acute extracellular fluid volume changes on saline flow through 4 gut segments (ileocolonic, ileal, ileocolonic sphincter and proximal colon), perfused at constant pressure in anesthetized dogs. Two different experimental protocols were used: hypervolemia (iv saline infusion, 0.9% NaCl, 20 ml/min, volume up to 5% body weight) and controlled hemorrhage (up to a 50% drop in mean arterial pressure). Mean ileocolonic flow (N = 6) was gradually and significantly decreased during the expansion (17.1%, P<0.05) and expanded (44.9%, P<0.05) periods while mean ileal flow (N = 7) was significantly decreased only during the expanded period (38%, P<0.05). Mean colonic flow (N = 7) was decreased during expansion (12%, P<0.05) but returned to control levels during the expanded period. Mean ileocolonic sphincter flow (N = 6) was not significantly modified. Mean ileocolonic flow (N = 10) was also decreased after hemorrhage (retracted period) by 17% (P<0.05), but saline flow was not modified in the other separate circuits (N = 6, 5 and 4 for ileal, ileocolonic sphincter and colonic groups, respectively). The expansion effect was blocked by atropine (0.5 mg/kg, iv) both on the ileocolonic (N = 6) and ileal (N = 5) circuits. Acute extracellular fluid volume retraction and expansion increased the lower gastrointestinal resistances to saline flow. These effects, which could physiologically decrease the liquid volume being supplied to the colon, are possible mechanisms activated to acutely balance liquid volume deficit and excess.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously demonstrated that blood volume (BV) expansion decreases saline flow through the gastroduodenal (GD) segment in anesthetized rats (Xavier-Neto J, dos Santos AA & Rola FH (1990) Gut, 31: 1006-1010). The present study attempts to identify the site(s) of resistance and neural mechanisms involved in this phenomenon. Male Wistar rats (N = 97, 200-300 g) were surgically manipulated to create four gut circuits: GD, gastric, pyloric and duodenal. These circuits were perfused under barostatically controlled pressure (4 cmH2O). Steady-state changes in flow were taken to reflect modifications in circuit resistances during three periods of time: normovolemic control (20 min), expansion (10-15 min), and expanded (30 min). Perfusion flow rates did not change in normovolemic control animals over a period of 60 min. BV expansion (Ringer bicarbonate, 1 ml/min up to 5% body weight) significantly (P<0.05) reduced perfusion flow in the GD (10.3 ± 0.5 to 7.6 ± 0.6 ml/min), pyloric (9.0 ± 0.6 to 5.6 ± 1.2 ml/min) and duodenal (10.8 ± 0.4 to 9.0 ± 0.6 ml/min) circuits, but not in the gastric circuit (11.9 ± 0.4 to 10.4 ± 0.6 ml/min). Prazosin (1 mg/kg) and yohimbine (3 mg/kg) prevented the expansion effect on the duodenal but not on the pyloric circuit. Bilateral cervical vagotomy prevented the expansion effect on the pylorus during the expansion but not during the expanded period and had no effect on the duodenum. Atropine (0.5 mg/kg), hexamethonium (10 mg/kg) and propranolol (2 mg/kg) were ineffective on both circuits. These results indicate that 1) BV expansion increases the GD resistance to liquid flow, 2) pylorus and duodenum are important sites of resistance, and 3) yohimbine and prazosin prevented the increase in duodenal resistance and vagotomy prevented it partially in the pylorus

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the design of electrical machines, efficiency improvements have become very important. However, there are at least two significant cases in which the compactness of electrical machines is critical and the tolerance of extremely high losses is valued: vehicle traction, where very high torque density is desired at least temporarily; and direct-drive wind turbine generators, whose mass should be acceptably low. As ever higher torque density and ever more compact electrical machines are developed for these purposes, thermal issues, i.e. avoidance of over-temperatures and damage in conditions of high heat losses, are becoming of utmost importance. The excessive temperatures of critical machine components, such as insulation and permanent magnets, easily cause failures of the whole electrical equipment. In electrical machines with excitation systems based on permanent magnets, special attention must be paid to the rotor temperature because of the temperature-sensitive properties of permanent magnets. The allowable temperature of NdFeB magnets is usually significantly less than 150 ˚C. The practical problem is that the part of the machine where the permanent magnets are located should stay cooler than the copper windings, which can easily tolerate temperatures of 155 ˚C or 180 ˚C. Therefore, new cooling solutions should be developed in order to cool permanent magnet electrical machines with high torque density and because of it with high concentrated losses in stators. In this doctoral dissertation, direct and indirect liquid cooling techniques for permanent magnet synchronous electrical machines (PMSM) with high torque density are presented and discussed. The aim of this research is to analyse thermal behaviours of the machines using the most applicable and accurate thermal analysis methods and to propose new, practical machine designs based on these analyses. The Computational Fluid Dynamics (CFD) thermal simulations of the heat transfer inside the machines and lumped parameter thermal network (LPTN) simulations both presented herein are used for the analyses. Detailed descriptions of the simulated thermal models are also presented. Most of the theoretical considerations and simulations have been verified via experimental measurements on a copper tooth-coil (motorette) and on various prototypes of electrical machines. The indirect liquid cooling systems of a 100 kW axial flux (AF) PMSM and a 110 kW radial flux (RF) PMSM are analysed here by means of simplified 3D CFD conjugate thermal models of the parts of both machines. In terms of results, a significant temperature drop of 40 ̊C in the stator winding and 28 ̊C in the rotor of the AF PMSM was achieved with the addition of highly thermally conductive materials into the machine: copper bars inserted in the teeth, and potting material around the end windings. In the RF PMSM, the potting material resulted in a temperature decrease of 6 ̊C in the stator winding, and in a decrease of 10 ̊C in the rotor embedded-permanentmagnets. Two types of unique direct liquid cooling systems for low power machines are analysed herein to demonstrate the effectiveness of the cooling systems in conditions of highly concentrated heat losses. LPTN analysis and CFD thermal analysis (the latter being particularly useful for unique design) were applied to simulate the temperature distribution within the machine models. Oil-immersion cooling provided good cooling capability for a 26.6 kW PMSM of a hybrid vehicle. A direct liquid cooling system for the copper winding with inner stainless steel tubes was designed for an 8 MW directdrive PM synchronous generator. The design principles of this cooling solution are described in detail in this thesis. The thermal analyses demonstrate that the stator winding and the rotor magnet temperatures are kept significantly below their critical temperatures with demineralized water flow. A comparison study of the coolant agents indicates that propylene glycol is more effective than ethylene glycol in arctic conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myocardial contractility depends on several mechanisms such as coronary perfusion pressure (CPP) and flow as well as on a1-adrenoceptor stimulation. Both effects occur during the sympathetic stimulation mediated by norepinephrine. Norepinephrine increases force development in the heart and produces vasoconstriction increasing arterial pressure and, in turn, CPP. The contribution of each of these factors to the increase in myocardial performance needs to be clarified. Thus, in the present study we used two protocols: in the first we measured mean arterial pressure, left ventricular pressure and rate of rise of left ventricular pressure development in anesthetized rats (N = 10) submitted to phenylephrine (PE) stimulation before and after propranolol plus atropine treatment. These observations showed that in vivo a1-adrenergic stimulation increases left ventricular-developed pressure (P<0.05) together with arterial blood pressure (P<0.05). In the second protocol, we measured left ventricular isovolumic systolic pressure (ISP) and CPP in Langendorff constant flow-perfused hearts. The hearts (N = 7) were perfused with increasing flow rates under control conditions and PE or PE + nitroprusside (NP). Both CPP and ISP increased (P<0.01) as a function of flow. CPP changes were not affected by drug treatment but ISP increased (P<0.01). The largest ISP increase was obtained with PE + NP treatment (P<0.01). The results suggest that both mechanisms, i.e., direct stimulation of myocardial a1-adrenoceptors and increased flow, increased cardiac performance acting simultaneously and synergistically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyzed the flow-volume curves of 50 patients with complaints of snoring and daytime sleepiness in treatment at the Pneumology Unit of the University Hospital of Brasília. The total group was divided into snorers without obstructive sleep apnea (OSA) (N = 19) and snorers with OSA (N = 31); the patients with OSA were subdivided into two groups according to the apnea/hypopnea index (AHI): AHI<20/h (N = 14) and AHI>20/h (N = 17). The control group (N = 10) consisted of nonsmoking subjects without complaints of snoring, daytime sleepiness or pulmonary diseases. The population studied (control and patients) consisted of males of similar age, height and body mass index (BMI); spirometric data were also similar in the four groups. There was no significative difference in the ratio of forced expiratory and inspiratory flows (FEF50%/FIF50%) in any group: control, 0.89; snorers, 1.11; snorers with OSA (AHI<20/h), 1.42, and snorers with OSA (AHI>20/h), 1.64. The FIF at 50% of vital capacity (FIF50%) of snoring patients with or without OSA was lower than the FIF50% of the control group (P<0.05): snorers 4.30 l/s; snorers with OSA (AHI<20/h) 3.69 l/s; snorers with OSA (AHI>20/h) 3.17 l/s and control group 5.48 l/s. The FIF50% of patients with severe OSA (AHI>20/h) was lower than the FIF50% of snorers without OSA (P<0.05): 3.17 l/s and 4.30 l/s, respectively. We conclude that 1) the FEF50%/FIF50% ratio is not useful for predicting OSA, and 2) FIF50% is decreased in snoring patients with and without OSA, suggesting that these patients have increased upper airway resistance (UAR).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pulsatile pressure-flow model was developed for in vitro quantitative color Doppler flow mapping studies of valvular regurgitation. The flow through the system was generated by a piston which was driven by stepper motors controlled by a computer. The piston was connected to acrylic chambers designed to simulate "ventricular" and "atrial" heart chambers. Inside the "ventricular" chamber, a prosthetic heart valve was placed at the inflow connection with the "atrial" chamber while another prosthetic valve was positioned at the outflow connection with flexible tubes, elastic balloons and a reservoir arranged to mimic the peripheral circulation. The flow model was filled with a 0.25% corn starch/water suspension to improve Doppler imaging. A continuous flow pump transferred the liquid from the peripheral reservoir to another one connected to the "atrial" chamber. The dimensions of the flow model were designed to permit adequate imaging by Doppler echocardiography. Acoustic windows allowed placement of transducers distal and perpendicular to the valves, so that the ultrasound beam could be positioned parallel to the valvular flow. Strain-gauge and electromagnetic transducers were used for measurements of pressure and flow in different segments of the system. The flow model was also designed to fit different sizes and types of prosthetic valves. This pulsatile flow model was able to generate pressure and flow in the physiological human range, with independent adjustment of pulse duration and rate as well as of stroke volume. This model mimics flow profiles observed in patients with regurgitant prosthetic valves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heat transfer effectiveness in nuclear rod bundles is of great importance to nuclear reactor safety and economics. An important design parameter is the Critical Heat Flux (CHF), which limits the transferred heat from the fuel to the coolant. The CHF is determined by flow behaviour, especially the turbulence created inside the fuel rod bundle. Adiabatic experiments can be used to characterize the flow behaviour separately from the heat transfer phenomena in diabatic flow. To enhance the turbulence, mixing vanes are attached to spacer grids, which hold the rods in place. The vanes either make the flow swirl around a single sub-channel or induce cross-mixing between adjacent sub-channels. In adiabatic two-phase conditions an important phenomenon that can be investigated is the effect of the spacer on canceling the lift force, which collects the small bubbles to the rod surfaces leading to decreased CHF in diabatic conditions and thus limits the reactor power. Computational Fluid Dynamics (CFD) can be used to simulate the flow numerically and to test how different spacer configurations affect the flow. Experimental data is needed to validate and verify the used CFD models. Especially the modeling of turbulence is challenging even for single-phase flow inside the complex sub-channel geometry. In two-phase flow other factors such as bubble dynamics further complicate the modeling. To investigate the spacer grid effect on two-phase flow, and to provide further experimental data for CFD validation, a series of experiments was run on an adiabatic sub-channel flow loop using a duct-type spacer grid with different configurations. Utilizing the wire-mesh sensor technology, the facility gives high resolution experimental data in both time and space. The experimental results indicate that the duct-type spacer grid is less effective in canceling the lift force effect than the egg-crate type spacer tested earlier.