912 resultados para Asymptotic normality of sums
Resumo:
The kinetic theory of fluid turbulence modeling developed by Degond and Lemou in 7] is considered for further study, analysis and simulation. Starting with the Boltzmann like equation representation for turbulence modeling, a relaxation type collision term is introduced for isotropic turbulence. In order to describe some important turbulence phenomenology, the relaxation time incorporates a dependency on the turbulent microscopic energy and this makes difficult the construction of efficient numerical methods. To investigate this problem, we focus here on a multi-dimensional prototype model and first propose an appropriate change of frame that makes the numerical study simpler. Then, a numerical strategy to tackle the stiff relaxation source term is introduced in the spirit of Asymptotic Preserving Schemes. Numerical tests are performed in a one-dimensional framework on the basis of the developed strategy to confirm its efficiency.
Resumo:
Minimal crystallizations of simply connected PL 4-manifolds are very natural objects. Many of their topological features are reflected in their combinatorial structure which, in addition, is preserved under the connected sum operation. We present a minimal crystallization of the standard PL K3 surface. In combination with known results this yields minimal crystallizations of all simply connected PL 4-manifolds of ``standard'' type, that is, all connected sums of CP2, S-2 x S-2, and the K3 surface. In particular, we obtain minimal crystallizations of a pair of homeomorphic but non-PL-homeomorphic 4-manifolds. In addition, we give an elementary proof that the minimal 8-vertex crystallization of CP2 is unique and its associated pseudotriangulation is related to the 9-vertex combinatorial triangulation of CP2 by the minimum of four edge contractions.
Resumo:
A triangulation of a closed 2-manifold is tight with respect to a field of characteristic two if and only if it is neighbourly; and it is tight with respect to a field of odd characteristic if and only if it is neighbourly and orientable. No such characterization of tightness was previously known for higher dimensional manifolds. In this paper, we prove that a triangulation of a closed 3-manifold is tight with respect to a field of odd characteristic if and only if it is neighbourly, orientable and stacked. In consequence, the Kuhnel-Lutz conjecture is valid in dimension three for fields of odd characteristic. Next let F be a field of characteristic two. It is known that, in this case, any neighbourly and stacked triangulation of a closed 3-manifold is F-tight. For closed, triangulated 3-manifolds with at most 71 vertices or with first Betti number at most 188, we show that the converse is true. But the possibility of the existence of an F-tight, non-stacked triangulation on a larger number of vertices remains open. We prove the following upper bound theorem on such triangulations. If an F-tight triangulation of a closed 3-manifold has n vertices and first Betti number beta(1), then (n - 4) (617n - 3861) <= 15444 beta(1). Equality holds here if and only if all the vertex links of the triangulation are connected sums of boundary complexes of icosahedra. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
In the framework of the two-continuum approach, using the matched asymptotic expansion method, the equations of a laminar boundary layer in mist flows with evaporating droplets were derived and solved. The similarity criteria controlling the mist flows were determined. For the flow along a curvilinear surface, the forms of the boundary layer equations differ from the regimes of presence and absence of the droplet inertia deposition. The numerical results were presented for the vapor-droplet boundary layer in the neighborhood of a stagnation point of a hot blunt body. It is demonstrated that, due to evaporation, a droplet-free region develops near the wall inside the boundary layer. On the upper edge of this region, the droplet radius tends to zero and the droplet number density becomes much higher than that in the free stream. The combined effect of the droplet evaporation and accumulation results in a significant enhancement of the heat transfer on the surface even for small mass concentration of the droplets in the free stream. 在双连续介质理论框架下,采用匹配渐进展开方法导出并求解了具有蒸发液滴的汽雾流中层流边界层方程,给出了控制汽雾流的相似判据。对于沿曲面的流动,边界层方程的形式取决于是否存在液滴的惯性沉积。给出了热钝体验点附近蒸汽。液滴边界层的数值计算结果。它们表明:由于蒸发,在边界层内近壁处形成了一个无液滴区域;在该区上边界处,液滴半径趋于零而液滴数密度急剧增高。液滴蒸发及聚集的联合效应造成了表面热流的显著增加,甚至在自由来流中液滴质量浓度很低时此效应依然存在。
Resumo:
The aim of this paper is to survey a range of applications of high-frequency asymptotic methods in aeroacoustics. Specifically, we are concerned with problems associated with noise generation, propagation and scattering as found in large modern aeroengines. With regard to noise generation, we consider the interaction between high-frequency vortical waves and thin aerofoils, with particular emphasis being placed on the way in which the vortical waves act on the non-uniform mean flow around the aerofoil. A ray-theoretic description of the resulting sound as it propagates along the engine intake is then presented, followed by consideration of the diffraction of these rays by the (possibly asymmetric) intake lip to produce sound in the far field. A range of more detailed possible extensions is also presented.
Resumo:
The experiments of drop Marangoni migration have been performed by the drop shift facility of short period of 4.5 s, and the drop accelerates gradually to an asymptotic velocity during the free fall. The unsteady and axisymmetric model is developed to study the drop migration for the case of moderate Reynolds number Re = O(1), and the results are compared with the experimental ones in the present paper. Both numerical and experimental results show that the migration velocity for moderate Reynolds number is several times smaller than that given by the linear YGB theory.
Resumo:
The influence of surfactant on the breakup of a prestretched bubble in a quiescent viscous surrounding is studied by a combination of direct numerical simulation and the solution of a long-wave asymptotic model. The direct numerical simulations describe the evolution toward breakup of an inviscid bubble, while the effects of small but non-zero interior viscosity are readily included in the long-wave model for a fluid thread in the Stokes flow limit. The direct numerical simulations use a specific but realizable and representative initial bubble shape to compare the evolution toward breakup of a clean or surfactant-free bubble and a bubble that is coated with insoluble surfactant. A distinguishing feature of the evolution in the presence of surfactant is the interruption of bubble breakup by formation of a slender quasi-steady thread of the interior fluid. This forms because the decrease in surface area causes a decrease in the surface tension and capillary pressure, until at a small but non-zero radius, equilibrium occurs between the capillary pressure and interior fluid pressure. The long-wave asymptotic model, for a thread with periodic boundary conditions, explains the principal mechanism of the slender thread's formation and confirms, for example, the relatively minor role played by the Marangoni stress. The large-time evolution of the slender thread and the precise location of its breakup are, however, influenced by effects such as the Marangoni stress and surface diffusion of surfactant. © 2008 Cambridge University Press.
Resumo:
The strain gradient effect becomes significant when the size of fracture process zone around a crack tip is comparable to the intrinsic material length l, typically of the order of microns. Using the new strain gradient deformation theory given by Chen and Wang, the asymptotic fields near a crack tip in an elastic-plastic material with strain gradient effects are investigated. It is established that the dominant strain field is irrotational. For mode I plane stress crack tip asymptotic field, the stress asymptotic field and the couple stress asymptotic field can not exist simultaneously. In the stress dominated asymptotic field, the angular distributions of stresses are consistent with the classical plane stress HRR field; In the couple stress dominated asymptotic field, the angular distributions of couple stresses are consistent with that obtained by Huang et al. For mode II plane stress and plane strain crack tip asymptotic fields, only the stress-dominated asymptotic fields exist. The couple stress asymptotic field is less singular than the stress asymptotic fields. The stress asymptotic fields are the same as mode II plane stress and plane strain HRR fields, respectively. The increase in stresses is not observed in strain gradient plasticity for mode I and mode II, because the present theory is based only on the rotational gradient of deformation and the crack tip asymptotic fields are irrotational and dominated by the stretching gradient.
Resumo:
The joint time-frequency analysis method is adopted to study the nonlinear behavior varying with the instantaneous response for a class of S.D.O.F nonlinear system. A time-frequency masking operator, together with the conception of effective time-frequency region of the asymptotic signal are defined here. Based on these mathematical foundations, a so-called skeleton linear model (SLM) is constructed which has similar nonlinear characteristics with the nonlinear system. Two skeleton curves are deduced which can indicate the stiffness and damping in the nonlinear system. The relationship between the SLM and the nonlinear system, both parameters and solutions, is clarified. Based on this work a new identification technique of nonlinear systems using the nonstationary vibration data will be proposed through time-frequency filtering technique and wavelet transform in the following paper.
Resumo:
Using the constitutive equation of a rubber-like materials given by Gao (1997), this paper investigates the problem of a cone under tension of a concentrated force at its apex. Under consideration is the axial-symmetry case and the large strain is taken into account. The stress strain fields near the apex are obtained by both asymptotic analysis and finite element calculation. The two results are consistent well. When the cone angle is 180 degrees, the solution becomes that of non-linear Boussinesq's problem for tension case.
Resumo:
Sequential Monte Carlo methods, also known as particle methods, are a widely used set of computational tools for inference in non-linear non-Gaussian state-space models. In many applications it may be necessary to compute the sensitivity, or derivative, of the optimal filter with respect to the static parameters of the state-space model; for instance, in order to obtain maximum likelihood model parameters of interest, or to compute the optimal controller in an optimal control problem. In Poyiadjis et al. [2011] an original particle algorithm to compute the filter derivative was proposed and it was shown using numerical examples that the particle estimate was numerically stable in the sense that it did not deteriorate over time. In this paper we substantiate this claim with a detailed theoretical study. Lp bounds and a central limit theorem for this particle approximation of the filter derivative are presented. It is further shown that under mixing conditions these Lp bounds and the asymptotic variance characterized by the central limit theorem are uniformly bounded with respect to the time index. We demon- strate the performance predicted by theory with several numerical examples. We also use the particle approximation of the filter derivative to perform online maximum likelihood parameter estimation for a stochastic volatility model.
Resumo:
The plane strain asymptotic fields for cracks terminating at the interface between elastic and pressure-sensitive dilatant material are investigated in this paper. Applying the stress-strain relation for the pressure-sensitive dilatant material, we have obtained an exact asymptotic solution for the plane strain tip fields for two types of cracks, one of which lies in the pressure-sensitive dilatant material and the other in the elastic material and their tips touch both the bimaterial interface. In cases, numerical results show that the singularity and the angular variations of the fields obtained depend on the material hardening exponent n, the pressure sensitivity parameter mu and geometrical parameter lambda.
Resumo:
A new method is presented for calculating the values of K-I and K-II in the elasticity solution at the tip of an interface crack. The method is based on an evaluation of the J-integral by the virtual crack extension method. Expressions for calculating K-I and K-II by using the displacements and the stiffness derivative of the finite element solution and asymptotic crack tip displacements are derived. The method is shown to produce very accurate solutions even with coarse element mesh.
Resumo:
Examined in this work is the anti-plane stress and strain near a crack in a material that softens beyond the elastic peak and unloads on a linear path through the initial state. The discontinuity in the constitutive relation is carried into the analysis such that one portion of the local solution is elliptic in character and the other hyperbolic. Material elements in one region may cross over to another as the loading is increased. Local unloading can thus prevail. Presented are the inhomogeneous character of the asymptotic stress and strain in the elliptic and hyperbolic region, in addition to the region in which the material elements had experienced unloading. No one single stress or strain coefficient would be adequate for describing crack instability.
Resumo:
A finite element analysis associated with an asymptotic solution method for the harmonic flexural vibration of viscoelastically damped unsymmetrical sandwich plates is given. The element formulation is based on generalization of the discrete Kirchhoff theory (DKT) element formulation. The results obtained with the first order approximation of the asymptotic solution presented here are the same as those obtained by means of the modal strain energy (MSE) method. By taking more terms of the asymptotic solution, with successive calculations and use of the Padé approximants method, accuracy can be improved. The finite element computation has been verified by comparison with an analytical exact solution for rectangular plates with simply supported edges. Results for the same plates with clamped edges are also presented.