881 resultados para Aspartate transaminase
Resumo:
In the clinical setting, chronic administration of high doses of systemic morphine may result in neuro-excitatory behaviours such as myoclonus and allodynia in some patients. Additionally, high doses of m-opioid agonists such as morphine administered chronically by the intrathecal route in both rats and humans, as well as DAMGO in rats, have been reported to produce neuro-excitatory behaviours. However, more recently, it has begun to be appreciated that even at normal analgesic doses, opioids such as morphine are capable not only of activating pain inhibitory systems (analgesia/antinociception), but they also activate pain facilitatory systems such that post-opioid allodynia/hyperalgesia may be evident after cessation of opioid treatment. Whilst it is well documented that opioid receptors mediate the inhibitory effects of opioid analgesics, the excitatory and pro-nociceptive effects of opioids appear to involve indirect activation of N-methyl-D-aspartate (NMDA) receptors, such that the extent of pain relief produced may be the net effect of these two opposing actions. Apart from the NMDA-nitric oxide (NO) pro-nociceptive signaling cascade, considerable evidence also implicates dynorphin A as well as the endogenous anti-opioid peptides cholecystokinin (CCK), neuropeptide FF (NPFF) and orphanin FQ/nociceptin, in mediating opioid-induced neuro-excitation and abnormal pain behaviours. Apart from the neuro-excitatory effects that may be produced by the parent opioid, systemic administration of some opioid analgesics such as morphine and hydromorphone in rats and humans results in their rapid conversion to 3-glucuronide metabolites that also contribute significantly to the neuro-excitatory and abnormal pain behaviours produced
Resumo:
Chronic alcoholism leads to localized brain damage, which is prominent in superior frontal cortex but mild in motor cortex. The likelihood of developing alcohol dependence is associated with genetic markers. GABA-A receptor expression differs between alcoholics and controls, whereas glutamate receptor differences are muted. We determined whether genotype differentiated the localized expression of glutamate N-methyl-D-aspartate (NMDA) and GABA-A receptors to influence the severity of alcohol-induced brain damage. Cerebral cortex tissue was obtained at autopsy from alcoholics without disease comorbid with alcoholics, alcoholics with cirrhosis, and matched controls. DRD2A, DRD2B, GABRB2, SLC1A2, and 5HTT genotypes did not divide alcoholic cases and controls on NMDA receptor parameters. In contrast, a specific alcohol dehydrogenase (ADHIC) genotype interacted significantly with NMDA efficacy and affinity in a region-specific manner SLC1A2 (glutamate transporter-2) genotype interacted significantly with local GABAA receptor b subunit mRNA expression, and ADHIC, DRD2B, SLC1A2, and APOE genotypes with b subunit isoform protein expression. In the latter instance, possession of the alcoholism- associated allele altered b isoform protein expression patterns toward a less-efficacious form of the GABA-A receptor in the pathologically vulnerable region. GABRB2 and GRIN2B (NMDA receptor 2B subunit} Genotypes were associated with significant regional difference in the pattern of b subunit protein isoform expression, but this was not influenced by alcoholism status. Genotype may modulate amino acid transmission locally so as to mediate neuronal vulnerability. This has implications for the effectiveness of pharmacological interventions aimed at ameliorating brain damage and, possibly, dependence.
Resumo:
The inherent neurotoxic potential ofthe endogenous excitatory amino acid glutamate, may be causally related to the pathogenesis ofAD neurodegeneration disorders. Neuronal excitotoxicity is conceivably mediated by the N-methyl-D-aspartate-(NMDA)-Ca2+- ionotropic receptor. NMDA receptors exist as multimeric complexes comprising proteins from two families – NR1 and NR2(A-D). The polyamines, spermine and spermidine bind to, and modulate NMDA receptor efficacy via interaction with exon 5, an alternatively-spliced, 21 amino acid, N-terminal cassette. ADassociated cognitive impairment may therefore occur via subunitspecific NMDA receptor dysfunction effecting regional selectivity ofneuronal degradation. Total RNA was prepared from pathologically spared and susceptible regions from AD cases and matched controls. Quantitation was performed using standard curve methodology in which a known amount ofa synthetic ribonucleic acid competitor deletion construct was co-amplified against total RNA. Expression profile analysis oftwo NR1 mRNA subsets has revealed significant differences in NR11XX mRNA levels in cingulate gyrus, P.
Resumo:
The principal aim of this work was to examine the effects of antiepileptic drugs (AEDs) on vision. Vigabatrin acts by increasing GABA at brain inhibitory synapses by irreversibly binding to GABA-transaminase. Remacemide is a novel non-competitive NMDA receptor antagonist and fast sodium channel inhibitor that results in the inhibition of the NMDA receptors located in the neuronal membrane calcium channels increasing glutamate in the brain. Vigabatrin has been shown to cause a specific pattern of visual field loss, as one in three adults taking vigabatrin have shown a bilateral concentric constriction. Remacemide has unknown effects on vision. The majority of studies of the effects of AEDs on vision have not included the paediatric population due to difficulties assessing visual field function using standard perimetry testing. Evidently an alternative test is required to establish and monitor visual field problems associated with AEDs both in children and in adults who cannot comply with perimetry. In order to test paediatric patients exposed to vigabatrin, a field-specific visual evoked potential was developed. Other tests performed on patients taking either vigabatrin or remacemide were electroretinograms, electro-oculograms, multifocal VEPs and perimetry. Comparing these tests to perimetry results from vigabatrin patients the field specific VEP was found to have a high sensitivity and specificity, as did the 30Hz flicker amplitude. The modified VEP was also found to provide useful results in vigabatrin patients. Remacemide did not produce a similar visual field loss to vigabatrin although macular vision was affected. The field specific VEP is a useful method for detecting vigabatrin associated visual field loss that is well tolerated by young children. This technique combined with the ERG under light adapted (30Hz flicker) condition is presently the superior method for detecting vigabatrin-attributed peripheral field defects present in children below the developmental age of 9. The effects of AEDs on vision should be monitored carefully and the use of multifocal stimulation allows for specific areas of the retina and visual pathway to be monitored.
Amino acid, peptide and drug transport across monolayers of human intestinal (CAC0-2) cells in vitro
Resumo:
The properties of Caco-2 monolayers were compared on aluminium oxide and nitrocellulose permeable-supports. On nitrocellulose, Caco-2 cells displayed a higher rate of taurocholic acid transport than those cultured on aluminium oxide inserts. In addition, Caco-2 cells grown on these two inserts were not comparable with respect to cell morphology, cell numbers and transepithelial electrical resistance. The low adsorption potential of the aluminium oxide inserts, particularly for high molecular weight or lipophilic ligands, offers a distinct advantage over nitrocellulose inserts for drug transport studies. The carrier-mediated uptake and transport of the imino acid (L-proline) and the acidic amino acids (L-aspartate and L-glutamate) have been studied. At pH7.4, L-proline uptake is mediated via an A-system carrier. Elevated uptake and transport under acidic conditions occurs by activation of a distinct carrier population. Acidic amino acid transport is mediated via a X-AG system. The flux of baclofen, CGP40116 andCGP40117 across Caco-2 monolayers was described by passive transport. The transport of three peptides, thyrotrophin-releasing hormone, SQ29852 and cyclosporin were investigated. Thyrotrophin-releasing hormone transport acrossCaco-2 monolayers was characterised by a minor saturable (carrier-mediated,approximately 25%) pathway, superimposed onto a major non-saturable (diffusional)pathway. SQ29852 uptake into Caco-2 monolayers is described by a major saturable mechanism (Km = 0.91 mM) superimposed onto a minor passive component.However, the initial-rate of SQ29852 transport is consistent with a passive transepithelial transport mechanism. These data highlight the possibility that itsbasolateral efflux is severely retarded such that the passive paracellular transportdictates the overall transepithelial transport characteristics. In addition, modelsuitable for investigating the transepithelial transport of cyclosporin A has been developed. A modification of the conventional Caco-2 model has been developed which has a calcium-free Ap donor-solution and a Bl receiver-solution containing the minimumcalcium concentration required to maintain monolayer integrity (100 μM). The influence of calcium and magnesium on the absorption of [14C]pamidronate was evaluated by comparing its transport across the conventional and minimum calciumCaco-2 models. Ap calcium and magnesium ions retard the Ap-to-Bl flux of pamidronate across Caco-2 monolayers. The effect of self-emulsifying oleic acid-Tween 80 formulations on Caco-2monolayer integrity has been investigated. Oleic acid-Tween 80 (1 0:1) formulations produced a dose-dependent disruption of Caco-2 monolayer integrity. This disruption was related to the oleic acid content of the formulation.
Resumo:
Vigabatrin (VGB) is a transaminase inhibitor that elicits its anitepileptic effect by increasing GABA concentrations in the brain and retina. - Assess whether certain factors predispose patients to develop severe visual field loss. - Develop a sensitive algorithm for investigating the progression of visual field loss. - Determine the most sensitive clinical regimen for diagnosing VGB-attributed visual field loss. - Investigate whether the reports of central retinal sparing are accurate. The investigations have resulted in a number of significant findings: - The anatomical evidence in combination with the pattern of visual field loss suggests that the damage induced by VGB therapy occurs at retinal level, and is most likely a toxic effect. - The quantitative algorithm, designed within the course of this investigation, provided increased sensitivity in determining the severity of visual field loss. - Maximum VGB dose predisposes patients to develop severe visual field loss. - The SITA Standard algorithm was found to be as sensitive and significantly faster, in diagnosing visual field defects attributed to VGB, when compared to the Full Threshold algorithm. The Full Threshold was found to be the most repeatable between visits. - The normal SWAP 10-2 database provided an effective method of differentiating SWAP defects. - SWAP, FDT and the mfERG have increased sensitivity in detecting visual field loss attributed to VGB. The pattern of visual field loss from these investigations suggests that VGB produces a diffuse effect across the retina including subtle central abnormalities and more severe peripheral defects. - Abnormalities detected using the mfERG have suggested that VGB adversely affects the photoreceptors Müller, amacrine and ganglion cells in the retina. An urgent review of the manufacturers recommended maximum dose for VGB is required.
Resumo:
Astrocytes in the somatosensory ventrobasal (VB) thalamus of rats respond to glutamatergic synaptic input with metabotropic glutamate receptor (mGluR) mediated intracellular calcium ([Ca²?](i)) elevations. Astrocytes in the VB thalamus also release the gliotransmitter (GT) glutamate in a Ca²?-dependent manner. The tripartite synapse hypothesis posits that astrocytic [Ca²?](i) elevations resulting from synaptic input releases gliotransmitters that then feedback to modify the synapse. Understanding the dynamics of this process and the conditions under which it occurs are therefore important steps in elucidating the potential roles and impact of GT release in particular brain activities. In this study, we investigated the relationship between VB thalamus afferent synaptic input and astrocytic glutamate release by recording N-methyl-D-aspartate (NMDA) receptor-mediated slow inward currents (SICs) elicited in neighboring neurons. We found that Lemniscal or cortical afferent stimulation, which can elicit astrocytic [Ca²?](i) elevations, do not typically result in the generation of SICs in thalamocortical (TC) neurons. Rather, we find that the spontaneous emergence of SICs is largely resistant to acute afferent input. The frequency of SICs, however, is correlated to long-lasting afferent activity. In contrast to short-term stimulus-evoked GT release effects reported in other brain areas, astrocytes in the VB thalamus do not express a straightforward input-output relationship for SIC generation but exhibit integrative characteristics.
Resumo:
Background: Proton Magnetic Resonance Spectroscopy (H-MRS) is a non-invasive imaging technique that enables quantification of neurochemistry in vivo and thereby facilitates investigation of the biochemical underpinnings of human cognitive variability. Studies in the field of cognitive spectroscopy have commonly focused on relationships between measures of N-acetyl aspartate (NAA), a surrogate marker of neuronal health and function, and broad measures of cognitive performance, such as IQ. Methodology/Principal Findings: In this study, we used H-MRS to interrogate single-voxels in occipitoparietal and frontal cortex, in parallel with assessments of psychometric intelligence, in a sample of 40 healthy adult participants. We found correlations between NAA and IQ that were within the range reported in previous studies. However, the magnitude of these effects was significantly modulated by the stringency of data screening and the extent to which outlying values contributed to statistical analyses. Conclusions/Significance: H-MRS offers a sensitive tool for assessing neurochemistry non-invasively, yet the relationships between brain metabolites and broad aspects of human behavior such as IQ are subtle. We highlight the need to develop an increasingly rigorous analytical and interpretive framework for collecting and reporting data obtained from cognitive spectroscopy studies of this kind. © 2014 Patel, Blyth, Griffiths, Kelly and Talcott.
Resumo:
Objective. Patients with rheumatoid arthritis (RA) have increased concentrations of the amino acid glutamate in synovial fluid. This study was undertaken to determine whether glutamate receptors are expressed in the synovial joint, and to determine whether activation of glutamate receptors on human synoviocytes contributes to RA disease pathology. Methods. Glutamate receptor expression was examined in tissue samples from rat knee joints and in human fibroblast-like synoviocytes (FLS). FLS from 5 RA patients and 1 normal control were used to determine whether a range of glutamate receptor antagonists influenced expression of the proinflammatory cytokine interleukin-6 (IL-6), enzymes involved in matrix degradation and cytokine processing (matrix metalloproteinase 2 [MMP-2] and MMP-9), and the inhibitors of these enzymes (tissue inhibitor of metalloproteinases 1 [TIMP-1] and TIMP-2). IL-6 concentrations were determined by enzyme-linked immunosorbent assay, MMP activity was measured by gelatin zymography, and TIMP activity was determined by reverse zymography. Fluorescence imaging of intracellular calcium concentrations in live RA FLS stimulated with specific antagonists was used to reveal functional activation of glutamate receptors that modulated IL-6 or MMP-2. Results. Ionotropic and metabotropic glutamate receptor subunit mRNA were expressed in the patella, fat pad, and meniscus of the rat knee and in human articular cartilage. Inhibition of N-methyl-D-aspartate (NMDA) receptors in RA FLS increased proMMP-2 release, whereas non-NMDA ionotropic glutamate receptor antagonists reduced IL-6 production by these cells. Stimulation with glutamate, NMDA, or kainate (KA) increased intracellular calcium concentrations in RA FLS, demonstrating functional activation of specific ionotropic glutamate receptors. Conclusion. Our findings indicate that activation of NMDA and KA glutamate receptors on human synoviocytes may contribute to joint destruction by increasing IL-6 expression. © 2007, American College of Rheumatology.
Resumo:
Introduction: Polycystic ovary syndrome (PCOS) whose classic features (menstrual irregularity of oligo/ amenorrhea type, chronic anovulation, infertility and hyperandrogenism clinical and/ or biochemical), is associated with aspects of metabolic syndrome (MS), as obesity and insulin resistance. The level of obesity determines different levels of inflammation, increasing cytokines participants of metabolic and endocrine functions, beyond modulate the immune response. Metabolic changes, added to the imbalance of sex hormones underlying irregular menstruation observed in (PCOS) can trigger allergic processes and elevation of total and specific IgE antibodies indicate that a sensitization process was started. Objective: To evaluate the influence of PCOS on biochemical parameters and levels of total and specific IgE to aeroallergens in obese women. Methods: After approval by the Committee of Ethics in Research, were recruited 80 volunteers with BMI ≥ 30 kg/m2 and age between 18 and 45 years. Among these, 40 with PCOS according to the Rotterdam criteria and 40 women without PCOS (control group). All participants were analysed with regard to anthropometric, clinical, gynecological parameters, interviewed using a questionnaire, and underwent blood sampling for realization of laboratory tests of clinical biochemistry: Total cholesterol, LDL-cholesterol, HDL- cholesterol, Triglycerides, Fasting glucose, Urea, Creatinine, Aspartate aminotransferase (AST), Alanine aminotransferase (ALT) and immunological: total and specific IgE to Dermatophagoides pteronyssinus, Blomia tropicalis, Dermatophagoides farinae and Dermatophagoides microceras.Statistical analysis was performed using SPSS 15.0 software through the chi-square tests, Fisher, Student t test and binary logistic regression, with significance level (p <0.05). Results: It was observed in the group of obese women with PCOS that 29 (72.5%) had menstrual cycle variable and 27 (67.5%) had difficulty getting pregnant. According to waist-hip ratio, higher average was also observed in obese PCOS (0.87). Blood level of HDL (36.9 mg/dL) and ALT (29.3 U/L) were above normal levels in obese women with PCOS, with statistically significant relationship. In the analysis of total and specific IgE to D. pteronyssinus high results were also prevalent in obese PCOS, with blood level (365,22 IU/mL) and (6.83 kU/L), respectively, also statistically significant. Conclusions: Observed predominance of cases with high levels of total IgE in the group of obese women with PCOS, 28 (70%) of the participants, whose mean blood concentration of the group was 365.22 IU/mL. In the analysis of Specific IgE between the groups, the allergen Dermatophagoides pteronyssinus showed greater dispersion and average the results of sensitization in the group of obese PCOS, whose mean blood concentration was 6.83 kU/l. Keywords: Obesity, Allergens and Polycystic Ovary Syndrome
Resumo:
Multiple lines of evidence reveal that activation of the tropomyosin related kinase B (TrkB) receptor is a critical molecular mechanism underlying status epilepticus (SE) induced epilepsy development. However, the cellular consequences of such signaling remain unknown. To this point, localization of SE-induced TrkB activation to CA1 apical dendritic spines provides an anatomic clue pointing to Schaffer collateral-CA1 synaptic plasticity as one potential cellular consequence of TrkB activation. Here, we combine two-photon glutamate uncaging with two photon fluorescence lifetime imaging microscopy (2pFLIM) of fluorescence resonance energy transfer (FRET)-based sensors to specifically investigate the roles of TrkB and its canonical ligand brain derived neurotrophic factor (BDNF) in dendritic spine structural plasticity (sLTP) of CA1 pyramidal neurons in cultured hippocampal slices of rodents. To begin, we demonstrate a critical role for post-synaptic TrkB and post-synaptic BDNF in sLTP. Building on these findings, we develop a novel FRET-based sensor for TrkB activation that can report both BDNF and non-BDNF activation in a specific and reversible manner. Using this sensor, we monitor the spatiotemporal dynamics of TrkB activity during single-spine sLTP. In response to glutamate uncaging, we report a rapid (onset less than 1 minute) and sustained (lasting at least 20 minutes) activation of TrkB in the stimulated spine that depends on N-methyl-D-aspartate receptor (NMDAR)-Ca2+/Calmodulin dependent kinase II (CaMKII) signaling as well as post-synaptically synthesized BDNF. Consistent with these findings, we also demonstrate rapid, glutamate uncaging-evoked, time-locked release of BDNF from single dendritic spines using BDNF fused to superecliptic pHluorin (SEP). Finally, to elucidate the molecular mechanisms by which TrkB activation leads to sLTP, we examined the dependence of Rho GTPase activity - known mediators of sLTP - on BDNF-TrkB signaling. Through the use of previously described FRET-based sensors, we find that the activities of ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 (Cdc42) require BDNF-TrkB signaling. Taken together, these findings reveal a spine-autonomous, autocrine signaling mechanism involving NMDAR-CaMKII dependent BDNF release from stimulated dendritic spines leading to TrkB activation and subsequent activation of the downstream molecules Rac1 and Cdc42 in these same spines that proves critical for sLTP. In conclusion, these results highlight structural plasticity as one cellular consequence of CA1 dendritic spine TrkB activation that may potentially contribute to larger, circuit-level changes underlying SE-induced epilepsy.
Resumo:
The evidence base to guide withdrawal of antidementia medications in older people with dementia is limited; while some randomised controlled studies have considered discontinuation of cholinesterase inhibitors, no such studies examining discontinuation of the N-Methyl-D-aspartate receptor antagonist memantine have been conducted to date. The purpose of this opinion article was to summarise the existing evidence on withdrawal of cholinesterase inhibitors and memantine, to highlight the key considerations for clinicians when making these prescribing decisions and to offer guidance as to when and how treatment might be discontinued. Until the evidence-base is enhanced by the findings of large scale randomised controlled discontinuation trials of ChEIs and memantine which use multiple, clinically relevant cognitive, functional and behavioural outcome measures, clinicians’ prescribing decisions involve balancing the risks of discontinuation with side-effects and costs of continued treatment. Such decisions must be highly individualised and patient-centred.
Resumo:
Galactokinase, the enzyme which catalyses the first committed step in the Leloir pathway, has attracted interest due to its potential as a biocatalyst and as a possible drug target in the treatment of type I galactosemia. The mechanism of the enzyme is not fully elucidated. Molecular dynamics (MD) simulations of galactokinase with the active site residues Arg-37 and Asp-186 altered predicted that two regions (residues 174-179 and 231-240) had different dynamics as a consequence. Interestingly, the same two regions were also affected by alterations in Arg-105, Glu-174 and Arg- 228. These three residues were identified as important in catalysis in previous computational studies on human galactokinase. Alteration of Arg-105 to methionine resulted in a modest reduction in activity with little change in stability. When Arg-228 was changed to methionine, the enzyme’s interaction with both ATP and galactose was affected. This variant was significantly less stable than the wild-type protein. Changing Glu-174 to glutamine (but not to aspartate) resulted in no detectable activity and a less stable enzyme. Overall, these combined in silico and in vitro studies demonstrate the importance of a negative charge at position 174 and highlight the critical role of the dynamics in to key regions of the protein. We postulate that these regions may be critical for mediating the enzyme’s structure and function.