862 resultados para Artificial nueral network model
Resumo:
What sort of component coordination strategies emerge in a software integration process? How can such strategies be discovered and further analysed? How close are they to the coordination component of the envisaged architectural model which was supposed to guide the integration process? This paper introduces a framework in which such questions can be discussed and illustrates its use by describing part of a real case-study. The approach is based on a methodology which enables semi-automatic discovery of coordination patterns from source code, combining generalized slicing techniques and graph manipulation
Resumo:
Thermal degradation of as electrospun chitosan membranes and samples subsequently treated with ethanol and cross-linked with glutaraldehyde (GA) have been studied by thermogravimetry (TG) coupled with an infrared spectrometer (FTIR). The influence of the electrospinning process and cross-linking in the electrospun chitosan thermal stability was evaluated. Up to three degradation steps were observed in the TG data, corresponding to water dehydration reaction at temperatures below 100 ºC, loss of side groups formed between the amine groups of chitosan and trifluoroacetic acid between 150 – 270 ºC and chitosan thermal degradation that starts around 250 ºC and goes up to 400 ºC. The Kissinger model was employed to evaluate the activation energies of the electrospun membranes during isothermal experiments and revealed that thermal degradation activation energy increases for the samples processed by electrospinning and subsequent neutralization and cross-linking treatments with respect to the neat chitosan powder.
Resumo:
Value has been defined in different theoretical contexts as need, desire, interest, standard /criteria, beliefs, attitudes, and preferences. The creation of value is key to any business, and any business activity is about exchanging some tangible and/or intangible good or service and having its value accepted and rewarded by customers or clients, either inside the enterprise or collaborative network or outside. “Perhaps surprising then is that firms often do not know how to define value, or how to measure it” (Anderson and Narus, 1998 cited by [1]). Woodruff echoed that we need “richer customer value theory” for providing an “important tool for locking onto the critical things that managers need to know”. In addition, he emphasized, “we need customer value theory that delves deeply into customer’s world of product use in their situations” [2]. In this sense, we proposed and validated a novel “Conceptual Model for Decomposing the Value for the Customer”. To this end, we were aware that time has a direct impact on customer perceived value, and the suppliers’ and customers’ perceptions change from the pre-purchase to the post-purchase phases, causing some uncertainty and doubts.We wanted to break down value into all its components, as well as every built and used assets (both endogenous and/or exogenous perspectives). This component analysis was then transposed into a mathematical formulation using the Fuzzy Analytic Hierarchy Process (AHP), so that the uncertainty and vagueness of value perceptions could be embedded in this model that relates used and built assets in the tangible and intangible deliverable exchange among the involved parties, with their actual value perceptions.
Resumo:
We introduce a microscopic model for particles with dissimilar patches which displays an unconventional "pinched'' phase diagram, similar to the one predicted by Tlusty and Safran in the context of dipolar fluids [Science 290, 1328 (2000)]. The model-based on two types of patch interactions, which account, respectively, for chaining and branching of the self-assembled networks-is studied both numerically via Monte Carlo simulations and theoretically via first-order perturbation theory. The dense phase is rich in junctions, while the less-dense phase is rich in chain ends. The model provides a reference system for a deep understanding of the competition between condensation and self-assembly into equilibrium-polymer chains.
Resumo:
Energy resource scheduling becomes increasingly important, as the use of distributed resources is intensified and massive gridable vehicle use is envisaged. The present paper proposes a methodology for dayahead energy resource scheduling for smart grids considering the intensive use of distributed generation and of gridable vehicles, usually referred as Vehicle- o-Grid (V2G). This method considers that the energy resources are managed by a Virtual Power Player (VPP) which established contracts with V2G owners. It takes into account these contracts, the user´s requirements subjected to the VPP, and several discharge price steps. Full AC power flow calculation included in the model allows taking into account network constraints. The influence of the successive day requirements on the day-ahead optimal solution is discussed and considered in the proposed model. A case study with a 33 bus distribution network and V2G is used to illustrate the good performance of the proposed method.
Resumo:
Natural gas industry has been confronted with big challenges: great growth in demand, investments on new GSUs – gas supply units, and efficient technical system management. The right number of GSUs, their best location on networks and the optimal allocation to loads is a decision problem that can be formulated as a combinatorial programming problem, with the objective of minimizing system expenses. Our emphasis is on the formulation, interpretation and development of a solution algorithm that will analyze the trade-off between infrastructure investment expenditure and operating system costs. The location model was applied to a 12 node natural gas network, and its effectiveness was tested in five different operating scenarios.
Fuzzy Monte Carlo mathematical model for load curtailment minimization in transmission power systems
Resumo:
This paper presents a methodology which is based on statistical failure and repair data of the transmission power system components and uses fuzzyprobabilistic modeling for system component outage parameters. Using statistical records allows developing the fuzzy membership functions of system component outage parameters. The proposed hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models allows catching both randomness and fuzziness of component outage parameters. A network contingency analysis to identify any overloading or voltage violation in the network is performed once obtained the system states by Monte Carlo simulation. This is followed by a remedial action algorithm, based on optimal power flow, to reschedule generations and alleviate constraint violations and, at the same time, to avoid any load curtailment, if possible, or, otherwise, to minimize the total load curtailment, for the states identified by the contingency analysis. In order to illustrate the application of the proposed methodology to a practical case, the paper will include a case study for the Reliability Test System (RTS) 1996 IEEE 24 BUS.
Resumo:
This paper present a methodology to choose the distribution networks reconfiguration that presents the lower power losses. The proposed methodology is based on statistical failure and repair data of the distribution power system components and uses fuzzy-probabilistic modeling for system component outage parameters. The proposed hybrid method using fuzzy sets and Monte Carlo simulation based on the fuzzyprobabilistic models allows catching both randomness and fuzziness of component outage parameters. A logic programming algorithm is applied, once obtained the system states by Monte Carlo Simulation, to get all possible reconfigurations for each system state. To evaluate the line flows and bus voltages and to identify if there is any overloading, and/or voltage violation an AC load flow has been applied to select the feasible reconfiguration with lower power losses. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 115 buses distribution network.
Resumo:
In general, modern networks are analysed by taking several Key Performance Indicators (KPIs) into account, their proper balance being required in order to guarantee a desired Quality of Service (QoS), particularly, cellular wireless heterogeneous networks. A model to integrate a set of KPIs into a single one is presented, by using a Cost Function that includes these KPIs, providing for each network node a single evaluation parameter as output, and reflecting network conditions and common radio resource management strategies performance. The proposed model enables the implementation of different network management policies, by manipulating KPIs according to users' or operators' perspectives, allowing for a better QoS. Results show that different policies can in fact be established, with a different impact on the network, e.g., with median values ranging by a factor higher than two.
Resumo:
In a heterogeneous cellular networks environment, users behaviour and network deployment configuration parameters have an impact on the overall Quality of Service. This paper proposes a new and simple model that, on the one hand, explores the users behaviour impact on the network by having mobility, multi-service usage and traffic generation profiles as inputs, and on the other, enables the network setup configuration evaluation impact on the Joint Radio Resource Management (JRRM), assessing some basic JRRM performance indicators, like Vertical Handover (VHO) probabilities, average bit rates, and number of active users, among others. VHO plays an important role in fulfilling seamless users sessions transfer when mobile terminals cross different Radio Access Technologies (RATs) boundaries. Results show that high bit rate RATs suffer and generate more influence from/on other RATs, by producing additional signalling traffic to a JRRM entity. Results also show that the VHOs probability can range from 5 up to 65%, depending on RATs cluster radius and users mobility profile.
Resumo:
Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia
Resumo:
This thesis presents the Fuzzy Monte Carlo Model for Transmission Power Systems Reliability based studies (FMC-TRel) methodology, which is based on statistical failure and repair data of the transmission power system components and uses fuzzyprobabilistic modeling for system component outage parameters. Using statistical records allows developing the fuzzy membership functions of system component outage parameters. The proposed hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models allows catching both randomness and fuzziness of component outage parameters. A network contingency analysis to identify any overloading or voltage violation in the network is performed once obtained the system states. This is followed by a remedial action algorithm, based on Optimal Power Flow, to reschedule generations and alleviate constraint violations and, at the same time, to avoid any load curtailment, if possible, or, otherwise, to minimize the total load curtailment, for the states identified by the contingency analysis. For the system states that cause load curtailment, an optimization approach is applied to reduce the probability of occurrence of these states while minimizing the costs to achieve that reduction. This methodology is of most importance for supporting the transmission system operator decision making, namely in the identification of critical components and in the planning of future investments in the transmission power system. A case study based on Reliability Test System (RTS) 1996 IEEE 24 Bus is presented to illustrate with detail the application of the proposed methodology.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Composition is a practice of key importance in software engineering. When real-time applications are composed it is necessary that their timing properties (such as meeting the deadlines) are guaranteed. The composition is performed by establishing an interface between the application and the physical platform. Such an interface does typically contain information about the amount of computing capacity needed by the application. In multiprocessor platforms, the interface should also present information about the degree of parallelism. Recently there have been quite a few interface proposals. However, they are either too complex to be handled or too pessimistic.In this paper we propose the Generalized Multiprocessor Periodic Resource model (GMPR) that is strictly superior to the MPR model without requiring a too detailed description. We describe a method to generate the interface from the application specification. All these methods have been implemented in Matlab routines that are publicly available.