941 resultados para Aromatic Polymers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

O cancro é um problema de saúde crescente no mundo e é a segunda causa de morte depois das doenças cardíacas. De acordo com a Agência Internacional de Investigação em Cancro (IARC) existem atualmente mais de 10 milhões de casos de cancro por ano no mundo. Os produtos naturais oferecem oportunidades de inovação na descoberta de novos fármacos. Neste sentido, os compostos naturais isolados a partir de plantas medicinais, como potenciais fontes de novas drogas anticancerígenas, têm tido um interesse crescente. Os Óleos Essenciais (OEs) são sintetizados pelas plantas e têm sido estudados pelas suas inúmeras atividades biológicas, incluindo anticancerígena, anti-inflamatória, antimicrobiana, antiviral, antioxidante e repelente de insetos. Este estudo tem como objetivos determinar a eficácia de OEs de seis espécies de plantas das dunas de Peniche (Portugal), como potenciais agentes terapêuticos anticancerígenos em linhas celulares de cancro da mama (MCF7) e do colo-rectal (RKO), assim como perceber o mecanismo de ação destes OEs. Neste estudo, partes aéreas de Artemisia campestris subsp. maritima, Crithmum maritimum, Eryngium maritimum, Juniperus turbinata subsp. turbinata, Otanthus maritimus e Seseli tortuosum foram colhidas na praia da Consolação, em Peniche (Portugal), e os seus OEs isolados através de hidrodestilação. A composição química dos OEs foi investigada por cromatografia gasosa (GC) e por cromatografia gasosa com espetrofotometria de massa (GC-MS) e os compostos maioritários foram descritos para cada óleo. Para avaliar a atividade anticancerígena nas linhas celulares MCF7 e RKO, o método MTS (3- (4, 5-dimethyl- 2 -thiazolyl) - 2, 5-dyphenyl-2H-tetrazolium bromide) foi usado e a viabilidade celular avaliada, através de diluições sucessivas, a concentrações iniciais de 5 μL/mL e 1 μL/mL, com diluição de 1:2 e 1:10, respetivamente, comparando com o controlo (DMSO). De todos os OEs testados, a atividade anticancerígena foi descrita, em ambas as linhas celulares, como observado pela diminuição da viabilidade/proliferação celular – exceto o OE Eryngium maritimum a uma concentração inicial de 5 μL/mL.Com o objetivo de avaliar o mecanismo biológico de ação dos OEs, foi realizado um western blot para marcadores relativos ao bloqueio do ciclo celular e apoptose (p53, p21 e caspase 3 clivada), para Seseli tortuosum e Otanthus maritimus. Foi observado um aumento do nível proteína p53 nas células tratadas com estes OEs, sugerindo a indução de stress celular nas células cancerígenas testadas. No entanto, não foi observada caspase 3 clivada, sugerindo que a apoptose não terá sido a causa para a diminuição da viabilidade/proliferação celular observada. Foi ainda observado o aumento da expressão da p21 com os OEs selecionados, sugerindo que o tratamento com OE está associado ao bloqueio do ciclo celular. Para validar estas observações, a análise realizada por FACS, depois do tratamento indica um possível bloqueio do ciclo celular na fase G1. Concluindo, a concentração inicial de 5 μL/mL revelou ser muito tóxica para as linhas celulares testadas. No entanto, a uma concentração final de 1 μL/mL foi demonstrada uma diminuição da viabilidade/proliferação celular para todos os OEs. No estudo preliminar do mecanismo de ação dos OEs, foi demonstrado, face à presença da p21, que os óleos de Seseli tortuosum e Otanthus maritimus atuam bloqueando o ciclo celular. Para comprovar estes resultados, o FACS realizado (apenas no OE de Seseli tortuosum) revelou que este bloqueio pode ocorrer, pelo aumento da percentagem de células observadas, na fase G1. Estes resultados demonstram o interesse destes OEs de Peniche na procura de novos agentes quimo preventivos contra a progressão do cancro da mama e colo-rectal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Significant enhancements in enantioselectivities and reaction efficiencies in asymmetric copper-catalysed C-H insertion and aromatic addition reactions of α-diazocarbonyl compounds in the presence of various group I salts are reported. For the first time in carbenoid chemistry, evidence for the critical role of the metal cation is described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emulsion-based, resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) has been demonstrated as an alternative technique to deposit conjugated polymer films for photovoltaic applications; yet, a fundamental understanding of how the emulsion target characteristics translate into film properties and solar cell performance is unclear. Such understanding is crucial to enable the rational improvement of organic solar cell (OSC) efficiency and to realize the expected advantages of emulsion-based RIR-MAPLE for OSC fabrication. In this paper, the effect of the primary solvent used in the emulsion target is studied, both experimentally and theoretically, and it is found to determine the conjugated polymer cluster size in the emulsion as well as surface roughness and internal morphology of resulting polymer films. By using a primary solvent with low solubility-in-water and low vapor pressure, the surface roughness of deposited P3HT and PCPDTBT polymer films was reduced to 10 nm, and the efficiency of P3HT:PC61BM OSCs was increased to 3.2% (∼100 times higher compared to the first MAPLE OSC demonstration [ Caricato , A. P. ; Appl. Phys. Lett. 2012 , 100 , 073306 ]). This work unveils the mechanism of polymer film formation using emulsion-based RIR-MAPLE and provides insight and direction to determine the best ways to take advantage of the emulsion target approach to control film properties for different applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrostatic interaction is a strong force that attracts positively and negatively charged molecules to each other. Such an interaction is formed between positively charged polycationic polymers and negatively charged nucleic acids. In this dissertation, the electrostatic attraction between polycationic polymers and nucleic acids is exploited for applications in oral gene delivery and nucleic acid scavenging. An enhanced nanoparticle for oral gene delivery of a human Factor IX (hFIX) plasmid is developed using the polycationic polysaccharide, chitosan (Ch), in combination with protamine sulfate (PS) to treat hemophilia B. For nucleic acid scavenging purposes, the development of an effective nucleic acid scavenging nanofiber platform is described for dampening hyper-inflammation and reducing the formation of biofilms.

Non-viral gene therapy may be an attractive alternative to chronic protein replacement therapy. Orally administered non-viral gene vectors have been investigated for more than one decade with little progress made beyond the initial studies. Oral administration has many benefits over intravenous injection including patient compliance and overall cost; however, effective oral gene delivery systems remain elusive. To date, only chitosan carriers have demonstrated successful oral gene delivery due to chitosan’s stability via the oral route. In this study, we increase the transfection efficiency of the chitosan gene carrier by adding protamine sulfate to the nanoparticle formulation. The addition of protamine sulfate to the chitosan nanoparticles results in up to 42x higher in vitro transfection efficiency than chitosan nanoparticles without protamine sulfate. Therapeutic levels of hFIX protein are detected after oral delivery of Ch/PS/phFIX nanoparticles in 5/12 mice in vivo, ranging from 3 -132 ng/mL, as compared to levels below 4 ng/mL in 1/12 mice given Ch/phFIX nanoparticles. These results indicate the protamine sulfate enhances the transfection efficiency of chitosan and should be considered as an effective ternary component for applications in oral gene delivery.

Dying cells release nucleic acids (NA) and NA-complexes that activate the inflammatory pathways of immune cells. Sustained activation of these pathways contributes to chronic inflammation related to autoimmune diseases including systemic lupus erythematosus, rheumatoid arthritis, and inflammatory bowel disease. Studies have shown that certain soluble, cationic polymers can scavenge extracellular nucleic acids and inhibit RNA-and DNA-mediated activation of Toll-like receptors (TLRs) and inflammation. In this study, the cationic polymers are incorporated onto insoluble nanofibers, enabling local scavenging of negatively charged pro-inflammatory species such as damage-associated molecular pattern (DAMP) molecules in the extracellular space, reducing cytotoxicity related to unwanted internalization of soluble cationic polymers. In vitro data show that electrospun nanofibers grafted with cationic polymers, termed nucleic acid scavenging nanofibers (NASFs), can scavenge nucleic acid-based agonists of TLR 3 and TLR 9 directly from serum and prevent the production of NF-ĸB, an immune system activating transcription factor while also demonstrating low cytotoxicity. NASFs formed from poly (styrene-alt-maleic anhydride) conjugated with 1.8 kDa branched polyethylenimine (bPEI) resulted in randomly aligned fibers with diameters of 486±9 nm. NASFs effectively eliminate the immune stimulating response of NA based agonists CpG (TLR 9) and poly (I:C) (TLR 3) while not affecting the activation caused by the non-nucleic acid TLR agonist pam3CSK4. Results in a more biologically relevant context of doxorubicin-induced cell death in RAW cells demonstrates that NASFs block ~25-40% of NF-ĸβ response in Ramos-Blue cells treated with RAW extracellular debris, ie DAMPs, following doxorubicin treatment. Together, these data demonstrate that the formation of cationic NASFs by a simple, replicable, modular technique is effective and that such NASFs are capable of modulating localized inflammatory responses.

An understandable way to clinically apply the NASF is as a wound bandage. Chronic wounds are a serious clinical problem that is attributed to an extended period of inflammation as well as the presence of biofilms. An NASF bandage can potentially have two benefits in the treatment of chronic wounds by reducing the inflammation and preventing biofilm formation. NASF can prevent biofilm formation by reducing the NA present in the wound bed, therefore removing large components of what the bacteria use to develop their biofilm matrix, the extracellular polymeric substance, without which the biofilm cannot develop. The NASF described above is used to show the effect of the nucleic acid scavenging technology on in vitro and in vivo biofilm formation of P. aeruginosa, S. aureus, and S. epidermidis biofilms. The in vitro studies demonstrated that the NASFs were able to significantly reduce the biofilm formation in all three bacterial strains. In vivo studies of the NASF on mouse wounds infected with biofilm show that the NASF retain their functionality and are able to scavenge DNA, RNA, and protein from the wound bed. The NASF remove DNA that are maintaining the inflammatory state of the open wound and contributing to the extracellular polymeric substance (EPS), such as mtDNA, and also removing proteins that are required for bacteria/biofilm formation and maintenance such as chaperonin, ribosomal proteins, succinyl CoA-ligase, and polymerases. However, the NASF are not successful at decreasing the wound healing time because their repeated application and removal disrupts the wound bed and removes proteins required for wound healing such as fibronectin, vibronectin, keratin, and plasminogen. Further optimization of NASF treatment duration and potential combination treatments should be tested to reduce the unwanted side effects of increased wound healing time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the effect of Silicon (Si) on Casparian band (CB) development, chemical composition of the exodermal CB and Si deposition across the root in the Si accumulators rice and maize and the Si non-accumulator onion. Plants were cultivated in nutrient solution with and without Si supply. The CB development was determined in stained root cross-sections. The outer part of the roots containing the exodermis was isolated after enzymatic treatment. The exodermal suberin was transesterified with MeOH/BF3 and the chemical composition was measured using gas chromatography-mass spectroscopy (GC-MS) and flame ionization detector (GC-FID). Laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS) was used to determine the Si deposition across root cross sections. Si promoted CB formation in the roots of Si-accumulator and Si non-accumulator species. The exodermal suberin was decreased in rice and maize due to decreased amounts of aromatic suberin fractions. Si did not affect the concentration of lignin and lignin-like polymers in the outer part of rice, maize and onion roots. The highest Si depositions were found in the tissues containing CB. These data along with literature were used to suggest a mechanism how Si promotes the CB development by forming complexes with phenols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the existing understanding of flame spread dynamics is enhanced through an extensive study of the heat transfer from flames spreading vertically upwards across 5 cm wide, 20 cm tall samples of extruded Poly (Methyl Methacrylate) (PMMA). These experiments have provided highly spatially resolved measurements of flame to surface heat flux and material burning rate at the critical length scale of interest, with a level of accuracy and detail unmatched by previous empirical or computational studies. Using these measurements, a wall flame model was developed that describes a flame’s heat feedback profile (both in the continuous flame region and the thermal plume above) solely as a function of material burning rate. Additional experiments were conducted to measure flame heat flux and sample mass loss rate as flames spread vertically upwards over the surface of seven other commonly used polymers, two of which are glass reinforced composite materials. Using these measurements, our wall flame model has been generalized such that it can predict heat feedback from flames supported by a wide range of materials. For the seven materials tested here – which present a varied range of burning behaviors including dripping, polymer melt flow, sample burnout, and heavy soot formation – model-predicted flame heat flux has been shown to match experimental measurements (taken across the full length of the flame) with an average accuracy of 3.9 kW m-2 (approximately 10 – 15 % of peak measured flame heat flux). This flame model has since been coupled with a powerful solid phase pyrolysis solver, ThermaKin2D, which computes the transient rate of gaseous fuel production of constituents of a pyrolyzing solid in response to an external heat flux, based on fundamental physical and chemical properties. Together, this unified model captures the two fundamental controlling mechanisms of upward flame spread – gas phase flame heat transfer and solid phase material degradation. This has enabled simulations of flame spread dynamics with a reasonable computational cost and accuracy beyond that of current models. This unified model of material degradation provides the framework to quantitatively study material burning behavior in response to a wide range of common fire scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes the modification of the commercial TFC-S nanofiltration membrane with shape-persistent dendritic architectures. Amphiphilic aromatic polyamide dendrimers (G1-G3) are synthesized via a divergent approach and used for membrane modification by direct percolation. The permeate samples collected from the percolation experiments are analyzed by UV-Vis spectroscopy to instantly monitor the influence of dendrimer generations on percolation behaviors and new active layer formation. The membrane structures are further characterized by Rutherford backscattering spectrometry (RBS) and atomic force microscopy (AFM) techniques, suggesting a low-level accumulation of dendrimers inside the TFC-S NF membranes and subsequent formation of an additional aramide dendrimer active layer. Thus, all the modified TFC-S membranes have a double active layer structure. A PES-PVA film is used as a control membrane showing that structural compatibility between the dendrimer and supports plays an important role in the membrane modification process. The performance of modified TFC-S membrane is evaluated on the basis of rejection abilities of a variety of water contaminants having a range of sizes and chemistry. As the water flux is inversely proportional to the thickness of the active layer, we optimize the amount of dendrimers deposited for specific contaminants to improve the solute rejection while maintaining high water flux.