882 resultados para Aquatic mammals
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Phocid seals have been proposed as models for diabetes because they exhibit limited insulin response to glucose, high blood glucose and increasing insulin resistance when fasting. Liver glucose-6-phosphatase (G6Pase) catalyses the final step in glucose production and is central to glucose regulation in other animals. G6Pase comprises a translocase (SLC37A4) and a catalytic subunit (G6PC). G6PC and SLC37A4 expression and activity are normally regulated by nutritional state and glucostatic hormones, particularly insulin, and are elevated in diabetes. We tested the hypotheses that (1) grey seal G6PC and SLC37A4 cDNA and predicted protein sequences differ from other species’ at functional sites, (2) relative G6Pase protein abundances are lower during feeding than fasting and (3) relative G6Pase protein abundances are related to insulin, insulin receptor phosphorylation and key metabolite levels. We show that G6PC and partial SLC37A4 cDNA sequences encode proteins sharing 82–95 % identity with other mammals. Seal G6PC contained no differences in sites responsible for activity, stability or subcellular location. Several substitutions in seal SLC37A4 were predicted to be tolerated with low probability, which could affect glucose production. Suckling pups had higher relative abundance of both subunits than healthy, postweaned fasting pups. Furthermore, relative G6PC abundance was negatively related to glucose levels. These findings contrast markedly with the response of relative hepatic G6Pase abundance to feeding, fasting, insulin, insulin sensitivity and key metabolites in other animals, and highlight the need to understand the regulation of enzymes involved in glucose control in phocids if these animals are to be informative models of diabetes.
Resumo:
Although very little is known about the transport, fate and toxic effects of medical compounds in aquatic environments, the presence of these compounds in potable water sources can no longer be overlooked. We can argue that trace concentrations of drugs in the water is relatively a minor problem, however, the current and future demands on global potable freshwater supplies will probably lead to greater incidents of indirect and direct water-reuse situations at the local, regional, and cross-border levels. It is important to remark that the solution of this emerging ecological issue does not rely on new and better wastewater treatment technologies, but a new paradigm of responsibility and the understanding of the relations between anthropogenic actions and their ecological effects as well. The objective of this brief communication is to present the state of the art of research conducted in the last decade in Europe and United States concerning the presence of pharmaceuticals products in aquatic environments.
Resumo:
Final Report
Resumo:
ID: 8906; issued December 19, 2000
Resumo:
ID: 8987; Annual Project Report for 2003, Project No. DLIA 2003-14 issued August 17, 2004
Resumo:
The results reported on were from a monitoring survey No. 9 undertaken between 9th and 12th September 2011 during construction period of the Bujagali Hydropower Project (BHPP). Two pre-construction, baseline surveys in April 2000 and April 2006 were conducted and so far, during construction phase of the project, eight monitoring surveys have been undertaken i.e. in September 2007, April 2008, April 2009, October 2009, April 2010, September 2010, April 2011 and the present one, in September 2011. Since 2009 biannual monitoring surveys have been conducted at an upstream and a downstream transect of the BHPP with emphasis on the following aspects: water quality determinants biology and ecology of fishes and food webs fish stock and fish catch including economic aspects of catch and sanitation/vector studies (bilharzias and river blindness)in addition to the above mentioned studies, a soil pH survey was undertaken on 15th October 2011 in the area behind the reservoir whose filling started a week earlier. The findings of pH status in the catchment of the dam are also contained in this report.
Resumo:
O conhecimento de como os mamíferos carnívoros de médio e grande porte Neotropicais capturam e manipulam suas presas é incipiente, e algumas espécies podem somente ser investigadas por análises das fezes, e certos presupostos teóricos sobre forrageo podem ser aplicados e testados a partir da análise da dieta. Lontra longicaudis é um mamífero aquático cuja as fezes podem ser facilmente reconhecidas e coletadas para fornecer informação básica referentes a ecologia de forrageamento da espécie. Com base nessa situação, foram desenvolvidas duas questões relacionadas a dieta, como: (I) Se a 30 composição de presas na dieta varia entre as estações ao longo do ano? E qual o tamanho da magnitude do efeito deste fator? (II) Se a amplitude da dieta varia entre as estações? Nós respondemos estas questões por meio da análise das fezes. Foram realizadas 12 expedições mensais para as coletas, em um trecho de 13 quilômetros do baixo curso do Arroio Grande. Cada fezes foi coletada individualmente, e dados como data e posição geografica anotados. As presas foram classificadas por categorias alimentares (peixes, mamíferos, aves, anfíbios, serpentes, crustaceos e insetos) e em nível de família. A alimentação de L. longicaudis foi a baseada em peixes, com uma amplitude de dieta estreita. As famílias Cichlidae e Callichthyidae predominaram na dieta ao longo do ano. A composição de peixes na dieta variou sazonalmente, porém, a amplitude da dieta não variou. Assim Lontra longicaudis caça presas e mantém certo grau de felxibilidade alimentar ao longo do ano.
Resumo:
The mobile water hyacinth, which was produced in growth zones, especially Murchison bay, was mainly exported to three sheltered storage bays (Thruston, Hannington and Waiya). Between 1996 and May 1998, the mobile form of water hyacinth occupied about 800 ha in Thruston bay, 750 ha in Hannington bay and 140 ha in Waiya bay). Biological control weevils and other factors, including localised nutrient depletion, weakened the weed that was confined to the bays and it sunk around October 1998. The settling to the bottom of such huge quantities of organic matter its subsequent decomposition and the debris from this mass was likely to have environmental impacts on biotic communities (e.g. fish and invertebrate), physico-chemical conditions (water quality), and on socio-economic activities (e.g. at fish landings, water abstraction, and hydro-power generation points). Sunken water hyacinth debris could also affect nutrient levels in the water column and lead to reduction in the content of dissolved oxygen. The changes in nutrient dynamics and oxygen levels could affect algal productivity, invertebrate composition and fish communities. Socio-economic impacts of dead sunken weed were expected from debris deposited along the shoreline especially at fish landings, water abstraction and hydropower generation points. Therefore, environmental impact assessment studies were carried out between 1998 and 2002 in selected representative zones of Lake Victoria to identify the effects of the sunken water hyacinth biomass.
Resumo:
Proliferation of invasive aquatic weeds has developed into a major ecological and socio economic issue for many regions of the world. As a consequence, inference on where to target control and other management efforts is critical in the management of aquatic weeds (Ibáñez et al., 2009). Notwithstanding, aquatic systems in Uganda in general and in the basins of Lakes Victoria and Kyoga in particular, have fallen victims to aquatic weeds invasion and subsequent infestation. If these aquatic weeds infestations are to be minimized and their impacts mitigated, management decisions ought to be based on up-to-date data and information in relation to location of infestation hotspots. Aquatic systems in the basins of the two production systems are important sources of livelihoods especially from fish production and trade yet they are prone to infestation by aquatic weeds. Thus, the invasion and subsequent infestation of aquatic ecosystems by aquatic weeds pose a major conservation threat to various aquatic resources (Catford et al., 2011; Kayanja, 2002). This paper examines the extent to which aquatic weeds have infested aquatic ecosystems in the basins of Lakes Victoria and Kyoga. The information is expected to guide management of major aquatic weeds through rational allocation of the scarce resources by targeting hotspots.
Resumo:
Urbanization is a global process contributing to the loss and fragmentation of natural habitats. Many studies have focused on the biological response of terrestrial taxa and habitats to urbanization. However, little is known regarding the consequences of urbanization on freshwater habitats, especially small lentic systems. In this study we examined aquatic macroinvertebrate diversity (family and species level) and variation in community composition between 240 urban and 784 non-urban ponds distributed across the UK. Contrary to predictions, urban ponds supported similar numbers of invertebrate species and families compared to non-urban ponds. Similar gamma diversity was found between the two groups at a family level, and while at a species level gamma diversity was higher in non-urban ponds, this difference was not statistically significant. The biological communities of urban ponds were markedly different to those of non-urban ponds and the variability in urban pond community composition was greater than that in non-urban ponds, contrary to previous work showing homogenisation of communities in urban areas. Positive spatial autocorrelation was recorded for urban and non-urban ponds at 0-50 km (distance between pond study sites) and negative spatial autocorrelation was observed at 100-150 km, and was stronger in urban ponds in both cases. Ponds do not follow the same ecological patterns as terrestrial and lotic habitats (reduced taxonomic richness) in urban environments; in contrast they support high taxonomic richness and contribute significantly to regional faunal diversity. Individual cities are complex structural mosaics which evolve over long periods of time and are managed in diverse ways, promoting the development of a wide-range of environmental conditions and habitat niches in urban ponds which can promote greater heterogeneity between pond communities at larger scales. Ponds provide an opportunity for managers and environmental regulators to conserve and enhance freshwater biodiversity in urbanized landscapes whilst also facilitating key ecosystem services including storm water storage and water treatment.
Resumo:
Weeds are plants growing in environments where they are undesirable. Aquatic weeds in fresh waters are nuisance or noxious plants growing in association with water in lakes, impoundment, rivers, canals, wetlands, etc. Some waterweeds cause very big financial loss through the socio economic, environmental and ecological impacts they inflict; and through the effort and expense required for their control. Other waterweeds are simply nuisance plants that cause minimal impacts. This paper is intended to introduce aquatic weeds outlining their characteristics, the main socio-economic and environmental impacts associated with them, and the control strategies often applied for their management.
Resumo:
This paper, based on the outcome of discussions at a NORMAN Network-supported workshop in Lyon (France) in November 2014 aims to provide a common position of passive sampling community experts regarding concrete actions required to foster the use of passive sampling techniques in support of contaminant risk assessment and management and for routine monitoring of contaminants in aquatic systems. The brief roadmap presented here focusses on the identification of robust passive sampling methodology, technology that requires further development or that has yet to be developed, our current knowledge of the evaluation of uncertainties when calculating a freely dissolved concentration, the relationship between data from PS and that obtained through biomonitoring. A tiered approach to identifying areas of potential environmental quality standard (EQS) exceedances is also shown. Finally, we propose a list of recommended actions to improve the acceptance of passive sampling by policy-makers. These include the drafting of guidelines, quality assurance and control procedures, developing demonstration projects where biomonitoring and passive sampling are undertaken alongside, organising proficiency testing schemes and interlaboratory comparison and, finally, establishing passive sampler-based assessment criteria in relation to existing EQS.
Resumo:
Uganda is rich in aquatic resources. Up to 17 % of the country's surface area is covered by Aquatic systems comprising five major lakes; Victoria, Albert, Kyoga, Edward, George, about 160 minor lakes, an extensive river and stream system, dams and ponds. These aquatic systems are associated with extensive swamps