884 resultados para Antioxidant-prooxidant


Relevância:

10.00% 10.00%

Publicador:

Resumo:

近年来大量研究表明水杨酸(salicylic acid, SA)在植物抵抗生物胁迫与非生物胁迫中都发挥着重要作用。然而在一些单子叶植物如水稻中SA的作用迄今仍不是很清楚。为了更深入地了解SA在水稻抵御冷胁迫中的作用,本研究选用两个抗冷性不同的水稻品种:‘长白九’(Oryza sativa cv. ‘Changbaijiu’)和‘中鉴’(Oryza sativa cv. ‘Zhongjian’)作为实验材料,其中‘长白九’为抗冷性较强的品种,而‘中鉴’为冷敏感的品种。在水稻幼苗长至三叶期后,分别对其施以三种浓度(0.5 mM, 1.0 mM, 2.0 mM)的SA溶液预处理24 h,然后置于5 °C下进行冷处理24 h。形态学观察及各项指标的测定结果表明: 一、冷处理后,‘长白九’和‘中鉴’根与叶片中的SA含量都大幅提高,且结合态SA升高的幅度明显大于其自由态形式。 二、外施不同浓度的SA溶液于水稻根部,24 h后,大量SA尤其是结合态SA积累于根中,且其积累量与处理浓度成正相关;而叶片中积累的SA则较少。 三、形态学及生理指标的测定结果显示,SA预处理没有提高甚至降低了两个水稻品种幼苗的抗冷性。并且SA处理浓度越大,幼苗受到冷伤害程度的越高。 四、对水稻幼苗叶片与根中的抗氧化酶活性进行分析发现,常温下SA处理显著提高了‘长白九’和‘中鉴’根中过氧化氢酶(catalase, CAT)和谷胱甘肽还原酶(glutathione reductase, GR)的活性;而在低温下SA预处理反而降低了两种水稻叶片与根中部分抗氧化酶的活性,推测低温下抗氧化酶活性的下降可能与水稻幼苗抗冷性的降低有关。 五、尽管两个水稻品种具有不同的冷敏感性,然而外施水杨酸均加剧了其低温伤害。分析认为,外施水杨酸后,水稻根部大幅升高的内源SA水平可能加剧了活性氧的产生,破坏了植物细胞内部的氧化还原平衡,从而导致水稻幼苗受到的冷害加重。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

以‘早久保’(Prunus persica (L.) Batch.)为试材,在果实最后迅速生长期,通过去果处理降低库力,同时设留果对照,并通过环剥和保留相同数量叶片严格控制库源关系,进行了源叶净光合速率(Pn)、叶绿素荧光、叶黄素循环、抗氧化酶及抗氧化同化物日变化的研究。结果表明,和留果对照相比,去果处理显著降低了源叶Pn、气孔导度(gs)和蒸腾速率(E),但显著增加了胞间二氧化碳浓度(Ci)、叶面饱和蒸汽压亏缺(VPDl)和叶片温度(Tl)。光系统II光化学效率(ΦPSII)以及羧化速率(CE)与Pn平行降低。中午去果降低Pn主要归因于非气孔限制。在低库需条件下,开放的PSII反应中心捕获能量的降低以及关闭的PSII反应中心的增加导致了ΦPSII的降低。去果处理叶片中依赖于叶黄素循环的热耗散以及抗氧化系统的上调保护叶片免受光氧化破坏。和留果对照相比,去果处理的叶片有更大的叶黄素循环库,更高的脱环氧化状态以及更高的抗氧化酶活性,包括超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、单脱氢抗坏血酸还原酶(MDAR)和脱氢抗坏血酸还原酶(DHAR)的活性以及更高的还原型抗坏血酸(AsA)和还原型谷胱甘肽(GSH)的含量。但与此同时,去果显著增加了过氧化氢(H2O2)以及丙二醛(MDA)的含量,这意味着在去果处理的叶片中可能会发生光氧化破坏。 以一年生‘皇家嘎拉’苹果(Malus domestica Borkh.)组培苗为试材,通过环剥降低库力,进行了源叶Pn、叶绿素荧光、核酮糖-1,5-二磷酸羧化酶/氧化酶(Rubisco)以及光系统II(PSII)复合体关键蛋白PsbA和PsbO含量日变化的研究。和对照相比,环剥显著降低了源叶Pn、gs和E,但是却显著增加了Ci、Tl和淀粉的含量。在低库需下,开放的PSII反应中心捕获能量的降低以及关闭的PSII反应中心的增加导致了ΦPSII的降低。另一方面,环剥降低了光合作用关键酶Rubisco以及PSII复合体PsbA和放氧复合体PsbO的含量。以上结果表明,环剥降低Pn主要归因于非气孔限制。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

银杏(Ginkgo. Biloba.L),又俗称白果,是起源于中国的特有珍贵树种。本实验选用银杏种子和种胚为材料,研究其脱水过程中存活率、抗氧化酶活性、ABA等生理变化,并通过外源处理方式提高种胚脱水耐性,探讨银杏种胚脱水敏感性与抗氧化系统、ABA的关系,为银杏种质资源的长期保存提供一定依据。研究结果显示: 银杏种子和离体胚对脱水均较敏感,快速脱水后完整种子临界含水量40.3%,半致死含水量约为32%左右,离体种胚分别为28.2%和22%左右,初步认为银杏属顽拗型种子。经比较银杏整粒种子、离体胚快速脱水时含水量变化情况,发现离体种胚比整粒种子更耐脱水,完整种子脱水对内部种胚是一种慢速脱水。 种胚脱水过程中,含水量高于24.5% 时,丙二醛(MDA)含量基本不变,抗氧化酶活性增加,抗氧化酶防御机制起作用;当含水量低于24.5%时,MDA含量显著增加,抗氧化酶活性大幅度降低,防御机制无法消除过氧化产物的大量积累,造成细胞损伤,种胚存活率下降。因此银杏种胚脱水过程中,特别是脱水后期,抗氧化酶活性的迅速下降和脂质过氧化作用的加强与积累是造成存活率快速丧失、对脱水敏感的主要原因之一。 银杏属典型后熟种子,脱落后种胚需经历形态和生理发育过程,这一阶段脱水耐性在后熟7个月达到最大,ABA含量也不断积累,并在最耐脱水时期达到峰值,继续后熟脱水耐性减弱,ABA含量也迅速降低,可能与银杏种胚完成后熟转而进入萌发阶段有关。在种胚快速脱水过程中,ABA含量不断降低,与存活率显著正相关。银杏种胚在后熟过程中ABA的含量较低以及脱水过程中的不断降低,可能是造成种胚不耐脱水的另一部分原因。 通过外源ABA处理种胚后可明显提高其脱水耐性。ABA处理的种胚SOD活性升高,脱水后抗氧化酶活性(GR除外)被进一步激发,从而减少脂质过氧化伤害,降低细胞膜结构的破坏。这也更进一步证实了ABA和抗氧化系统在银杏种胚脱水过程中的重要作用。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文以正常性玉米种子‘农大108’(Zea Mays L. ‘Nongda 108’) 种胚为实验材料,研究了玉米种子发育过程中脱水耐性的变化规律,细胞匀浆以及线粒体水平上活性氧清除酶活性与种子脱水耐性/敏感性的关系,以及线粒体结构和功能完整性在发育过程中不同阶段对脱水的应答,以期在亚细胞分区水平上,针对活性氧产生的源头位点 (线粒体) 探明种子细胞脱水耐性/敏感性与抗氧化系统运转的关系。结果表明: 玉米种子在发育过程中先获得萌发能力后获得脱水耐性,并且脱水耐性的获得是一个渐进的过程。人工授粉后26天 (Days after pollination, DAP) 之前的种胚不具有脱水耐性,26 DAP时开始获得脱水耐性,到34 DAP后种胚完全获得脱水耐性。 在发育过程中,种胚线粒体的呼吸速率逐渐降低,并且对脱水的敏感性也逐渐下降。脱水会降低脱水敏感性种胚线粒体的结构完整性;脱水同时会降低线粒体功能的完整性,包括线粒体能量产生的速率和效率,以及三羧酸循环关键酶的活性。但当种胚获得脱水耐性后,脱水将不再影响种胚线粒体结构和功能的完整性。 玉米种胚发育过程中脱水耐性的变化与细胞中的抗氧化系统有关。在细胞匀浆水平上,脱水过程中脂质过氧化产物的积累与细胞脱水耐性的关系不明显;但是在线粒体水平上脱水会明显导致脱水敏感性种胚线粒体膜质过氧化程度的升高。脱水导致脱水敏感种胚细胞中几个重要的抗氧化酶活性的下降,但是与细胞匀浆水平相比,在线粒体水平上抗氧化酶系统对脱水更加敏感。 总之,发育早期玉米胚对脱水之所以敏感有两方面的原因,一方面是发育早期线粒体具有较高的代谢速率因而产生过多的活性氧,另一方面是由于脱水导致各抗氧化酶活性的显著降低,失去了抗氧化保护功能。而在发育晚期,早期本来很活跃的许多代谢随之关闭,呼吸速率降到很低,因而产生的活性氧减少,同时由于抗氧化系统对脱水的耐受性,所以脱水不会对线粒体的结构和功能造成伤害。与细胞匀浆水平相比,线粒体水平上抗氧化系统的运转与种胚在发育过程中脱水耐性的获得的关系更加密切。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies have proposed that susceptibility to chronic obstructive pulmonary disease (COPD) might be related with the polymorphisms of some genes encoding antioxidant enzymes, such as heme oxygenase-1 (HOX-1) and microsomal epoxide hydrolase (mEPH).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biological soil crusts are important in reversing desertification. Ultraviolet radiation, however, may be detrimental for the development of soil crusts. The cyanobacterium Microcoleus vaginatus can be a dominant species occurring in desert soil crusts all over the world. To investigate the physico-chemical consequences of ultraviolet-B radiation on M. vaginatus, eight parameters including the contents of chlorophyll a, reactive oxygen species, malondialdehyde and proline, as well as the activities of photosynthesis, superoxide dismutase (EC 1.15.1.1), peroxiclase (EC 1.11.1.7) and catalase (EC 1.11.1.6) were determined. As shown by the results of determinations, ultraviolet-B radiation caused decreases both in contents of chlorophyll a and in ratios of variable fluorescence over maximum fluorescence that indicate the growth and photosynthesis of M. vaginatus, besides, increases both in levels of reactive oxygen species and in contents of malondialdehyde and proline, while intensified activities of superoxide dismutase, peroxiclase and catalase reflecting the abilities of enzymatic preventive substances to oxidative stress of the treated cells. Therefore, ultraviolet-B radiation affects the growth of M. vaginatus and leads to oxidative stress in cells. Under ultraviolet-B radiation, the treated cells can improve their antioxidant abilities to alleviate oxidative injury. The change trends of reactive oxygen species, superoxide dismutase, peroxiclase and catalase are synchronous. These results suggest that a balance between the antioxidant system and the reactive oxygen species content may be one part of a complex stress response pathway in which multiple environmental factors including ultraviolet-B radiation affect the Survival of M. vaginatus. (C) 2009 Elsevier Masson SAS. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A limnological study was carried out to determine the responses of superoxide dismutase (SOD) activities and soluble protein (SP) contents of 11 common aquatic plants to eutrophication stress. Field investigation in 12 lakes in the middle and lower reaches of the Yangtze River was carried out from March to September 2004. Our results indicated that non-submersed (emergent and floating-leafed) plants and submersed plants showed different responses to eutrophication stress. Both SOD activities of the non-submersed and submersed plants were negatively correlated with their SP contents (P < 0.000 1). SP contents of non-submersed plants were significantly correlated with all nitrogen variables in the water (P < 0.05), whereas SP contents of submersed plants were only significantly correlated with carbon variables as well as ammonium and Secchi depth (SD) in water (P < 0.05). Only SOD activities of submersed plants were decreased with decline of SD in water (P < 0.001). Our results indicate that the decline of SOD activities of submersed plants were mainly caused by light limitation, this showed a coincidence with the decline of macrophytes in eutrophic lakes, which might imply that the antioxidant system of the submersed plants were impaired under eutrophication stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidative stress response after prolonged exposure to a low dose of microcystins (MCs) was studied in liver, kidney and brain of domestic rabbits. Rabbits were treated with extracted MCs (mainly MC-LR and MC-RR) at a dose of 2 MC-LReq. mu g/kg body weight or saline solution every 24 h for 7 or 14 days. During the exposure of MCs, increase of lipid peroxidation (LPO) levels were detected in all the organs studied, while antioxidant enzymes responded differently among different organs. The enzyme activities Of Superoxide dismutase (SOD). catalase (CAT) and glutathione reductase (GR) in liver decreased in the MCs treated animals. In brain, there were obvious changes in glutathione peroxidase (GPx) and GR, while only CAT was obviously influenced in kidney. Therefore, daily exposure at a lower dosage of MCs, which mimicked a natural route of MCs. could also induce obvious oxidative stress in diverse organs of domestic rabbits. The oxidative stress induced by MCs in brain was as serious as in liver and kidney, suggesting that brain may also be a target of MCs in mammals. And it seems that animals may have more time to metabolize the toxins or to form an adaptive response to reduce the adverse effects when exposed to the low dose of MCs. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study was conducted to investigate time-dependent changes in oxidative enzymes in liver of crucian carp after intraperitoneally injection with extracted microcystins 600 and 150 mu g kg(-1) body weight. The results showed that activities of antioxidant enzymes, including superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase generally exhibited a rapid increase in early phase (1-3 h post injection), but gradually decreased afterwards (12-48 h) compared with the control, with an evident time-dependent effect. These zigzag changes over time contributed a better understanding on oxidative stress caused by microcystins in fish.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel multi-cell device made of organic glass was designed to study morphological and physiological characteristics of Microcystis population trapped in simulated sediment conditions. Changes of colonial morphology and antioxidant activities of the population were observed and measured over the range of 31-day incubation. During the incubation, the antioxidant enzyme activities fluctuated significantly in sediment environments. The activities of catalase (CAT), glutathione peroxidase (GPx) and malondialdehyde (NIDA) reached the highest on the 11(th) day, 6(th) day and 6(th) day. respectively, and then dropped down remarkably in the following days. The ratios of Fv/Fm and the maximal electron transfer rate (ETRm) declined during the initial days (1 similar to 11(th) day), but rebounded on the 16(th) day, which were consistent with the variations of total protein. In the end of incubation. gas vacuoles were hard]), observed and the gelatinous sheath was partly disappeared in the population of Microcystis. Nevertheless, the remaining populations. upon transferred to culture medium, were able to grow though experiencing a longer lag phase of nine days. The results indicated that the sediment environments were able to cause negative effects on M. aeruginosa cells. The cells, however, responded to against the possible damage afterwards. It is thus proposed the acute responses in the population during the early stage of sedimentation could be of importance in aiding the long-term survivor of Microcystis and recruitment in lake sediments. The present study also demonstrated the utility of the device in simulating the sediment environments for further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Field and experimental studies were conducted to investigate pathological characterizations and biochemical responses in the liver and kidney of the phytoplanktivorous bighead carp after intraperitoneal (i.p.) administration of microcystins (MCs) and exposure to natural cyanobacterial blooms in Meiliang Bay, Lake Taihu. Bighead carp in field and laboratory studies showed a progressive recovery of structure and function in terms of histological, cellular, and biochemical features. In laboratory study, when fish were i.p. injected with extracted MCs at the doses of 200 and 500 mu g MC- LReq/kg body weight, respectively, liver pathology in bighead carp was observed in a time dose-dependent manner within 24 h postinjection and characterized by disruption of liver structure, condensed cytoplasm, and the appearance of massive hepatocytes with karyopyknosis, karyorrhexis, and karyolysis. In comparison with previous studies on other fish, bighead carp in field study endured higher MC doses and longer-term exposure, but displayed less damage in the liver and kidney. Ultrastructural examination in the liver revealed the presence of lysosome proliferation, suggesting that bighead carp might eliminate or lessen cell damage caused by MCs through lysosome activation. Biochemically, sensitive responses in the antioxidant enzymes and higher basal glutathione concentrations might be responsible for their powerful resistance to MCs, suggesting that bighead carp can be used as biomanipulation fish to counteract cyanotoxin contamination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When tobacco BY-2 cells were treated with 60 mu g/mL MC-RR for 5 d, time-dependent effects of MC-RR on the cells were observed. Morphological changes such as abnormal elongation, evident chromatin condensation and margination, fragmentation of nucleus and formation of apoptotic-like bodies suggest that 60 mu g/mL MC-RR induced rapid apoptosis in tobacco BY-2 cells. Moreover, there was a significant and rapid increase of ROS level before the loss of mitochondrial membrane potential (Delta Psi(m)) and the onset of cell apoptosis. Ascorbic acid (AsA), a major primary antioxidant, prevented the increase of ROS generation, blocked the decrease in Delta Psi(m) and subsequent cell apoptosis, indicating a critical role of ROS in serving as an important signaling molecule by causing a reduction of Delta Psi(m) and MC-RR-induced tobacco BY-2 cell apoptosis. In addition, a specific mitochondrial permeability transition pores (PTP) inhibitor, cyclosporin A (CsA), significantly blocked the MC-RR-induced ROS formation, loss of Delta Psi(m), as well as cell apoptosis when the cells were MC-RR stressed for 3 d, suggesting that PTP is involved in 60 mu g/mL MC-RR-induced tobacco cell apoptosis signalling process. Thus, we concluded that the mechanism of MC-RR-induced apoptosis signalling pathways in tobacco BY-2 cells involves not only the excess generation of ROS and oxidative stress, but also the opening of PTP inducing loss of mitochondrial membrane potential. (C) 2007 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The allelopathic effects of two submerged macrophytes, Najas minor and Potamogeton malaianus, on growth, photosynthesis and antioxidant systems of Scenedesmus obliquus were assessed in coexistence experiments. The growth of S. obliquus was significantly suppressed by the two macrophytes. Moreover, P. malaianus showed the stronger growth inhibition effect on S. obliquus than N. minor. P. malaianus obviously inhibited the photosynthetic rate of S. obliquus, while N. minor had no inhibitory effect. Lipid peroxidation and three antioxidant enzymes activities (superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD)) of S. obliquus were investigated at the end of the co-cultures. The two macrophytes significantly enhanced the malondialdehyde (MDA) content, a product of lipid peroxidation, in S. obliquus. Activities of the three antioxidant enzymes of S. obliquus were simultaneously stimulated in P. malaianus treatment, while no significant variation of POD activity was observed in N. minor treatment. The results indicated that the two macrophytes N. minor and P. malaianus had significant allelopathic effects on S. obliquus. However, the two macrophytes influenced S. obliquus in different ways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to evaluate the sub-lethal toxicity of hexabromocyclododecane (HBCDD) in fish. Adult Chinese rare minnows as in vivo models were exposed to waterborne HBCDD from 1 to 500 mu g/l for 14, 28 and 42 days. Hepatic CYP1A1 (ethoxyresorufin-O-deethylase, EROD) and CYP2B1 (pentaoxyresorufin-O-depentylase, PROD) activities were measured. At the same time, molecular biomarkers of oxidative stress were also assayed in the brain, including reactive oxygen species (ROS), lipid peroxidation products (thiobarbituric acid-reactive substances, TBARS), DNA damage and protein carbonyl, as well as superoxide dismutase (SOD) activity and glutathione (GSH) content. DNA damage was evaluated using the Comet assay on erythrocytes. Besides, the content of HBCDD in whole fish was determined after 42 days exposure. The results show that HBCDD could induce EROD and PROD at 500 mu g/l after 28 days exposure, and at 100 to 500 mu g/l after 42 days exposure (P < 0.05), respectively. ROS formation in fish brain was observed to be increased in both time- and dose-dependent manner due to HBCDD exposure. The significant increases in TBARS and protein carbonyl contents occurred in fish brain after 28 and 42 days exposure (P < 0.05). Significant DNA damage in erythrocytes by Comet assay was also found in the 100-500 mu g/l exposure groups (P < 0.05) after 42 days exposure. Moreover, significant depletion in brain GSH content occurred in all treated groups (P < 0.05) and apparent inhibition in SOD activity in brain was observed in the groups of 10-500 mu g/l concentrations during 42 days exposure. The results demonstrate that increasing duration of HBCDD exposure induced EROD and PROD activities, caused excess ROS formation, finally resulted in oxidative damage to lipids, proteins and DNA and decreased antioxidant capacities in fish. Chemical analysis of HBCDD in whole fish showed accumulation up to 654 mu g/g wet weight. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Physiological and biochemical responses of four fishes with different trophic levels to toxic cyanobacterial blooms were studied in a large net cage in Meiliang Bay, a hypereutrophic region of Lake Taihu. We sampled four fishes: the phytoplanktivorous Hypophthalmichthys molitrix and Aristichthys nobilis, the omnivorous Carassius auratus, and the carnivorous Culter ilishaeformis. Alterations of the antioxidant (GSH) and the major antioxidant enzymes (CAT, SOD, GPx, GST) in livers were monitored monthly, and the ultrastructures of livers were compared between the bloom and post-bloom periods. During the cyanobacterial blooms, the phytoplanktivorous fishes displayed only slight ultrastructural changes in liver, while the carnivorous fish presented the most serious injury as swollen endomembrane system and morphologically altered nuclei in hepatocytes. Biochemically, the phytoplanktivorous fishes possessed higher basal GSH concentrations and better correlations between the major antioxidant enzymes in liver, which might be responsible for their powerful resistance to MCs. This article provided physiological and toxicological evidences for the possible succession of fish communities following occurrence of toxic cyanobacterial blooms and also for the applicability of using phytoplanktivorous fish to counteract toxic cyanobacterial blooms in natural waters. (C) 2007 Elsevier Ltd. All rights reserved.