972 resultados para Antimicrobial activity
Resumo:
Dissertation presented to obtain a Ph.D. degree in Biology, speciality in Microbiology, by Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Antibacterial activity of novel Active Pharmaceutical Ingredient Ionic Liquids (API-ILs) based on ampicillin anion [Amp] have been evaluated. They showed growth inhibition and bactericidal properties on some sensitive bacteria and especially some Gram-negative resistant bacteria when compared to the [Na][Amp] and the initial bromide and chloride salts. For these studies were analysed the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBIC) against sensitive Gram-negative bacteria Escherichia coli ATCC 25922 and Klebsiella pneumonia (clinically isolated), as well as sensitive Gram positive S. Aureus ATCC 25923, Staphylococcus epidermidis and Enterococcus faecalis and completed using clinically isolated resistent strains: E. coli TEM CTX M9, E. coli CTX M2 and E. coli AmpC Mox. From the obtained MIC values of studied APIs-ILs and standard [Na][Amp] were derived RDIC values (relative decrease of inhibitory concentration). High RDIC values of [C16Pyr][Amp] especially against two resistant Gram-negative strains E. coli TEM CTX M9 (RDIC>1000) and E. coli CTX M2 (RDIC>100) point clearly to a potential promising role of APIs-ILs as antimicrobial drugs especially against resistant bacterial strains.
Resumo:
Dissertation presented to obtain the Ph.D. degree in Biochemistry at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa
Resumo:
Erythromycin, a reversal agent in multidrug-resistant cancer, was assayed in chloroquine resistance modulation. The in vitro microtechnique for drug susceptibility was employed using two freshly isolates of Plasmodium falciparum from North of Brazil. The antimalarial effect of the drug was confirmed, with an IC50 estimates near the usual antimicrobial therapy concentration, and a significant statistical modulating action was observed for one isolate.
Resumo:
Guava leaf tea of Psidium guajava Linnaeus is commonly used as a medicine against gastroenteritis and child diarrhea by those who cannot afford or do not have access to antibiotics. This study screened the antimicrobial effect of essential oils and methanol, hexane, ethyl acetate extracts from guava leaves. The extracts were tested against diarrhea-causing bacteria: Staphylococcus aureus, Salmonella spp. and Escherichia coli. Strains that were screened included isolates from seabob shrimp, Xiphopenaeus kroyeri (Heller) and laboratory-type strains. Of the bacteria tested, Staphylococcus aureus strains were most inhibited by the extracts. The methanol extract showed greatest bacterial inhibition. No statistically significant differences were observed between the tested extract concentrations and their effect. The essential oil extract showed inhibitory activity against S. aureus and Salmonella spp. The strains isolated from the shrimp showed some resistance to commercially available antibiotics. These data support the use of guava leaf-made medicines in diarrhea cases where access to commercial antibiotics is restricted. In conclusion, guava leaf extracts and essential oil are very active against S. aureus, thus making up important potential sources of new antimicrobial compounds.
Resumo:
Surfacen® is an exogenous natural lung surfactant, composed by phospholipids and hydrophobic proteins, which is applied successfully in Newborn Respiratory Distress Syndrome. In this paper, in vitro activity of Surfacen® against Leishmania amazonensis is described. The product showed activity against the amastigote form found in peritoneal macrophages from BALB/c mice, with an IC50 value of 17.9 ± 3.0 µg/mL; while no toxic effect on host cell was observed up to 200 µg/mL. This is the first report about the antileishmanial activity of Surfacen®.
Resumo:
Currently multiresistant Staphylococcus aureus is one common cause of infections with high rates of morbidity and mortality worldwide, which directs scientific endeavors in search for novel antimicrobials. In this study, nine extracts from Bidens pilosa (root, stem, flower and leaves) and Annona crassiflora (rind fruit, stem, leaves, seed and pulp) were obtained with ethanol: water (7:3, v/v) and their in vitro antibacterial activity evaluated through both the agar diffusion and broth microdilution methods against 60 Oxacillin Resistant S. aureus (ORSA) strains and against S. aureus ATCC6538. The extracts from B. pilosa and A. crassiflora inhibited the growth of the ORSA isolates in both methods. Leaves of B. pilosa presented mean of the inhibition zone diameters significantly higher than chlorexidine 0.12% against ORSA, and the extracts were more active against S. aureus ATCC (p < 0.05). Parallel, toxicity testing by using MTT method and phytochemical screening were assessed, and three extracts (B. pilosa, root and leaf, and A. crassiflora, seed) did not evidence toxicity. On the other hand, the cytotoxic concentrations (CC50 and CC90) for other extracts ranged from 2.06 to 10.77 mg/mL. The presence of variable alkaloids, flavonoids, tannins and saponins was observed, even though there was a total absence of anthraquinones. Thus, the extracts from the leaves of B. pilosa revealed good anti-ORSA activity and did not exhibit toxicity.
Resumo:
Silver nanoparticles (AgNPs) are metal structures at the nanoscale. AgNPs have exhibited antimicrobial activities against fungi and bacteria; however synthesis of AgNPs can generate toxic waste during the reaction process. Accordingly, new routes using non-toxic compounds have been researched. The proposal of the present study was to synthesize AgNPs using ribose as a reducing agent and sodium dodecyl sulfate (SDS) as a stabilizer. The antifungal activity of these particles against C. albicans and C. tropicalis was also evaluated. Stable nanoparticles 12.5 ± 4.9 nm (mean ± SD) in size were obtained, which showed high activity against Candida spp. and could represent an alternative for fungal infection treatment.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biochemistry
Resumo:
The severity and frequency of opportunistic fungal infections still growing, concomitantly to the increasing rates of antimicrobial drugs resistance. Natural matrices have been used over years due to its multitude of health benefits, including antifungal potential. Thus, the present work aims to evaluate the anti-Candida potential of the phenolic extract and individual phenolic compounds of Glycyrrhiza glabra L. (licorice), by disc diffusion assay, followed by determination of the minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) for both planktonic cells and biofilms. Licorice extract evidenced inhibitory potential against the nineteen tested Candida strains, but no pronounced effect was observed by testing the most abundant individual phenolic compounds. Candida tropicalis strains were the most sensible, followed by Candida glabrata, Candida parapsilosis and, then, Candida albicans. Lower MIC and MFC values were achieved to C. glabrata and C. tropicalis, which confirms its susceptibility to licorice extract; however, for C. tropicalis strains a higher variability was observed. Anti-biofilm potential was also achieved, being most evident in some C. glabrata and C. tropicalis strains. In general, a twice concentration of the MIC was necessary for planktonic cells to obtain a similar potential to that one observed for biofilms. Thus, an upcoming approach for new antifungal agents, more effective and safer than the current ones, is stablished; notwithstanding, further studies are necessary in order to understand its mechanism of action, as also to assess kinetic parameters.
Resumo:
Review aricle
Resumo:
Surgical site infections (SSI) often occur after invasive surgery, which is as a serious health problem, making it important to develop new biomaterials to prevent infections. Spider silk is a natural biomaterial with excellent biocompatibility, low immunogenicity and controllable biodegradability. Through recombinant DNA technology, spider silk-based materials can be bioengineered and functionalized with antimicrobial (AM) peptides 1. The aim of this study is to develop new materials by combining spider silk chimeric proteins with AM properties and silk fibroin extracted from Bombyx mori cocoons to prevent microbial infection. Here, spider silk domains derived from the dragline sequence of the spider Nephila clavipes (6 mer and 15 mer) were fused with the AM peptides Hepcidin and Human Neutrophil peptide 1 (HNP1). The spider silk domain maintained its self-assembly features allowing the formation of beta-sheets to lock in structures without any chemical cross-linking. The AM properties of the developed chimeric proteins showed that 6 mer + HNP1 protein had a broad microbicidal activity against pathogens. The 6 mer + HNP-1 protein was then assembled with different percentages of silk fibroin into multifunctional films. In vitro cell studies with a human fibroblasts cell line (MRC5) showed nontoxic and cytocompatible behavior of the films. The positive cellular response, together with structural properties, suggests that this new fusion protein plus silk fibroin may be good candidates as multifunctional materials to prevent SSI.
Resumo:
Bacteriophages (phages) produce endolysins (lysins) as part of their lytic cycle in order to degrade the peptidoglycan layer of the infected bacteria for subsequent release of phage progeny. Because these enzymes maintain their lytic and lethal activity against Gram-positive bacteria when added extrinsically to the cells, they have been actively exploited as novel anti-infectives, sometimes termed enzybiotics. As with other relatively small peptides, one issue in their clinical development is their rapid inactivation through proteolytic degradation, immunological blockage and renal clearance. The antipneumococcal lysin Cpl-1 was shown to escape both proteolysis and immunological blockage. However, its short plasma half-life (20.5 min in mice) may represent a shortcoming for clinical usefulness. Here we report the construction of a Cpl-1 dimer with a view to increasing both the antipneumococcal specific activity and plasma half-life of Cpl-1. Dimerisation was achieved by introducing specific cysteine residues at the C-terminal end of the enzyme, thus favouring disulphide bonding. Compared with the native monomer, the constructed dimer demonstrated a two-fold increase in specific antipneumococcal activity and a ca. ten-fold decrease in plasma clearance. As several lysins are suspected to dimerise on contact with their cell wall substrate to be fully active, stable pre-dimerised enzymes may represent a more efficient alternative to the native monomer.
Resumo:
Drinking water is currently a scarce world resource, the preparation of which requires complex treatments that include clarification of suspended particles and disinfection. Seed extracts of Moringa oleifera Lam., a tropical tree, have been proposed as an environment-friendly alternative, due to their traditional use for the clarification of drinking water. However, the precise nature of the active components of the extract and whether they may be produced in recombinant form are unknown. Here we show that recombinant or synthetic forms of a cationic seed polypeptide mediate efficient sedimentation of suspended mineral particles and bacteria. Unexpectedly, the polypeptide was also found to possesses a bactericidal activity capable of disinfecting heavily contaminated water. Furthermore, the polypeptide has been shown to efficiently kill several pathogenic bacteria, including antibiotic-resistant isolates of Staphylococcus, Streptococcus, and Legionella species. Thus, this polypeptide displays the unprecedented feature of combining water purification and disinfectant properties. Identification of an active principle derived from the seed extracts points to a range of potential for drinking water treatment or skin and mucosal disinfection in clinical settings.
Resumo:
An antagonistic effect of voriconazole on the fungicidal activity of sequential doses of amphotericin B has previously been demonstrated in Candida albicans strains susceptible to voriconazole. Because treatment failure and the need to switch to other antifungals are expected to occur more often in infections that are caused by resistant strains, it was of interest to study whether the antagonistic effect was still seen in Candida strains with reduced susceptibility to voriconazole. With the hypothesis that antagonism will not occur in voriconazole-resistant strains, C. albicans strains with characterized mechanisms of resistance against voriconazole, as well as Candida glabrata and Candida krusei strains with differences in their degrees of susceptibility to voriconazole were exposed to voriconazole or amphotericin B alone, to both drugs simultaneously, or to voriconazole followed by amphotericin B in an in vitro kinetic model. Amphotericin B administered alone or simultaneously with voriconazole resulted in fungicidal activity. When amphotericin B was administered after voriconazole, its activity was reduced (median reduction, 61%; range, 9 to 94%). Levels of voriconazole-dependent inhibition of amphotericin B activity differed significantly among the strains but were not correlated with the MIC values (correlation coefficient, -0.19; P = 0.65). Inhibition was found in C. albicans strains with increases in CDR1 and CDR2 expression but not in the strain with an increase in MDR1 expression. In summary, decreased susceptibility to voriconazole does not abolish voriconazole-dependent inhibition of the fungicidal activity of amphotericin B in voriconazole-resistant Candida strains. The degree of interaction could not be predicted by the MIC value alone.