965 resultados para Antigens, Bacterial
Resumo:
Pós-graduação em Pesquisa e Desenvolvimento (Biotecnologia Médica) - FMB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: To characterize the microbial etiology of chronic suppurative otitis media comparing the methods of classical bacteriological culture and polymerase chain reaction.Design/Setting/Patients: Bacteriological analysis by classical culture and by molecular polymerase chain reaction of 35 effusion otitis samples from patients with cleft lip and palate attending the Hospital for Rehabilitation of Craniofacial Anomalies of the University of Sao Paulo, Bauru, Brazil.Interventions: Collection of clinical samples of otitis by effusion through the external auditory tube.Main Outcome Measure: Otolaryngologic diagnosis of chronic suppurative otitis media.Results: Positive cultures were obtained from 83% of patients. Among the 31 bacterial lineages the following were isolated. In order of decreasing frequency: Pseudomonas aeruginosa (54.9%), Staphylococcus aureus (25.9%), and Enterococcus faecalis (19.2%). No anaerobes were isolated by culture. The polymerase chain reaction was positive for one or more bacteria investigated in 97.1% of samples. Anaerobe lineages were detected by the polymerase chain reaction method, such as Fusobacterium nucleatum, Bacteroides fragilis, and Peptostreptococcus anaerobius.Conclusions: Patients with cleft lip and palate with chronic suppurative otitis media presented high frequency of bacterial infection in the middle ear. The classical bacteriological culture did not detect strict anaerobes, whose presence was identified by the polymerase chain reaction method.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Bacterial cellulose (BC) has become established as a remarkably versatile biomaterial and can be used in a wide variety of scientific applications, especially for medical devices. In this work, the bacterial cellulose fermentation process is modified by the addition of chondroitin sulfate (1% w/w) to the culture medium before the bacteria are inoculated. Besides, biomimetic precipitation of calcium phosphate of biological interest from simulated body fluid on bacterial cellulose was studied. Chondroitin sulfate influences in bacterial cellulose were analyzed using transmission infrared spectroscopy (FTIR), XRD (X-ray diffraction) and scanning electron microscopy (SEM). FTIR analysis showed interaction between chondroitin sulfate, bacterial cellulose and calcium phosphate and XRD demonstrated amorphous calcium phosphate and carbonated apatite on bacterial cellulose nanocomposites. SEM images confirmed incorporation of calcium phosphate in bacterial celluloe nanocomposite surface and uniform spherical calcium phosphate particles. Future experiments with cells adhesion and viability are in course.
Resumo:
Bacterial cellulose (BC) has established to be a remarkably versatile biomaterial and can be used in wide variety of applied scientific endeavors, especially for medical devices. In fact, biomedical devices recently have gained a significant amount of attention because of increased interesting tissue-engineered products for both wound care and the regeneration of damaged or diseased organs. The architecture of BC materials can be engineered over length scales ranging from nano to macro by controlling the biofabrication process, besides, surface modifications bring a vital role in in vivo performance of biomaterials. In this work, bacterial cellulose fermentation was modified with carbon nanotubes for sensor applications and diseases diagnostic. SEM images showed that polymer modified-carbon nanotube (PVOH-carbon nanotube) produced well dispersed system and without agglomeration. Influences of carbon nanotube in bacterial cellulose were analyzed by FTIR. TGA showed higher thermal properties of developed bionanocomposites.
Resumo:
Bacterial cellulose is a highly hydrated pellicle made up of a random assembly of ribbon shaped fibers less than 5 nm wide. The unique properties provided by the nanometric structure have led to a number of diagnostic biological probes, display devices due to their unique size-dependent medical applications. Bacterial cellulose matrix extracellular is a novel biotechnology and unique medicine indicated for ultimate chronic wound treatment management, drug delivery, tissue engineering, skin cancer and offers an actual and effective solution to a serious medical and social problem and to promote rapid healing in lesions caused by Diabetic burns, ulcers of the lower limbs or any other circumstance in which there's epidermal or dermal loss. In this work, it is reported novel antimicrobial peptides (AMPs) bacterial cellulose/polyhexanide biguanide (PHMB) which are produced by symbioses culture between polyhexanide biguanide and green tea culture medium resulting in the pure 3-D structure consisting of an ultra-fine network of novel biocellulose/PHMB nanofibres matrix (2-8 nm), highly hydrated (99% in weight), and with higher molecular weight, full biocompatibility.
Resumo:
Bacterial cellulose (BC) has become established as a remarkably versatile biomaterial and can be used in a wide variety of applied scientific applications, especially for medical devices. In this work, the bacterial cellulose fermentation process is modified by the addition of hyaluronic acid and gelatin (1% w/w) to the culture medium before the bacteria is inoculated. Hyaluronic acid and gelatin influence in bacterial cellulose was analyzed using Transmission Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Adhesion and viability studies with human dental pulp stem cells using natural bacterial cellulose/hyaluronic acid as scaffolds for regenerative medicine are presented for the first time in this work. MTT viability assays show higher cell adhesion in bacterial cellulose/gelatin and bacterial cellulose/ hyaluronic acid scaffolds over time with differences due to fiber agglomeration in bacterial cellulose/gelatin. Confocal microscopy images showed that the cell were adhered and well distributed within the fibers in both types of scaffolds.