947 resultados para Antibody decay
Resumo:
We measured tungsten (W) isotopes in 23 iron meteorites and the metal phase of the CB chondrite Gujba in order to ascertain if there is evidence for a large-scale nucleosynthetic heterogeneity in the p-process isotope 180W in the solar nebula as recently suggested by Schulz et al. (2013). We observed large excesses in 180W (up to ≈ 6 ε) in some irons. However, significant within-group variations in magmatic IIAB and IVB irons are not consistent with a nucleosynthetic origin, and the collateral effects on 180W from an s-deficit in IVB irons cannot explain the total variation. We present a new model for the combined effects of spallation and neutron capture reactions on 180W in iron meteorites and show that at least some of the observed within-group variability is explained by cosmic ray effects. Neutron capture causes burnout of 180W, whereas spallation reactions lead to positive shifts in 180W. These effects depend on the target composition and cosmic-ray exposure duration; spallation effects increase with Re/W and Os/W ratios in the target and with exposure age. The correlation of 180W/184W with Os/W ratios in iron meteorites results in part from spallogenic production of 180W rather than from 184Os decay, contrary to a recent study by Peters et al. (2014). Residual ε180W excesses after correction for an s-deficit and for cosmic ray effects may be due to ingrowth of 180W from 184Os decay, but the magnitude of this ingrowth is at least a factor of ≈2 smaller than previously suggested. These much smaller effects strongly limit the applicability of the putative 184Os-180W system to investigate geological problems.
Resumo:
BACKGROUND Japanese encephalitis virus (JEV) is the major cause of viral encephalitis in Southeast Asia. Vaccination of domestic pigs has been suggested as a "one health" strategy to reduce viral disease transmission to humans. The efficiency of two lentiviral TRIP/JEV vectors expressing the JEV envelope prM and E glycoproteins at eliciting protective humoral response was assessed in a mouse model and piglets. METHODOLOGY/PRINCIPAL FINDINGS A gene encoding the envelope proteins prM and E from a genotype 3 JEV strain was inserted into a lentiviral TRIP vector. Two lentiviral vectors TRIP/JEV were generated, each expressing the prM signal peptide followed by the prM protein and the E glycoprotein, the latter being expressed either in its native form or lacking its two C-terminal transmembrane domains. In vitro transduction of cells with the TRIP/JEV vector expressing the native prM and E resulted in the efficient secretion of virus-like particles of Japanese encephalitis virus. Immunization of BALB/c mice with TRIP/JEV vectors resulted in the production of IgGs against Japanese encephalitis virus, and the injection of a second dose one month after the prime injection greatly boosted antibody titers. The TRIP/JEV vectors elicited neutralizing antibodies against JEV strains belonging to genotypes 1, 3, and 5. Immunization of piglets with two doses of the lentiviral vector expressing JEV virus-like particles led to high titers of anti-JEV antibodies, that had efficient neutralizing activity regardless of the JEV genotype tested. CONCLUSIONS/SIGNIFICANCE Immunization of pigs with the lentiviral vector expressing JEV virus-like particles is particularly efficient to prime antigen-specific humoral immunity and trigger neutralizing antibody responses against JEV genotypes 1, 3, and 5. The titers of neutralizing antibodies elicited by the TRIP/JEV vector are sufficient to confer protection in domestic pigs against different genotypes of JEV and this could be of a great utility in endemic regions where more than one genotype is circulating.
Resumo:
Antibody-drug conjugates (ADCs) have emerged as a promising class of anticancer agents, combining the specificity of antibodies for tumor targeting and the destructive potential of highly potent drugs as payload. An essential component of these immunoconjugates is a bifunctional linker capable of reacting with the antibody and the payload to assemble a functional entity. Linker design is fundamental, as it must provide high stability in the circulation to prevent premature drug release, but be capable of releasing the active drug inside the target cell upon receptor-mediated endocytosis. Although ADCs have demonstrated an increased therapeutic window, compared to conventional chemotherapy in recent clinical trials, therapeutic success rates are still far from optimal. To explore other regimes of half-life variation and drug conjugation stoichiometries, it is necessary to investigate additional binding proteins which offer access to a wide range of formats, all with molecularly defined drug conjugation. Here, we delineate recent progress with site-specific and biorthogonal conjugation chemistries, and discuss alternative, biophysically more stable protein scaffolds like Designed Ankyrin Repeat Proteins (DARPins), which may provide such additional engineering opportunities for drug conjugates with improved pharmacological performance.
Resumo:
OBJECTIVE To describe the clinical spectrum, diagnostic evaluation, current management, and neurologic outcome of pediatric antibody-associated inflammatory brain diseases (AB-associated IBrainD). METHODS We performed a single-center retrospective cohort study of consecutive patients aged ≤18 years diagnosed with an AB-associated IBrainD at The Hospital for Sick Children, Toronto, Ontario, Canada, between January 2005 and June 2013. Standardized clinical data, laboratory test results, neuroimaging features, and treatment regimens were captured. RESULTS Of 169 children (93 female, 55%) diagnosed with an IBrainD, 16 (10%) had an AB-associated IBrainD. Median age at presentation was 13.3 years (range 3.1-17.9); 11 (69%) were female. Nine patients (56%) had anti-NMDA receptor encephalitis, 4 (25%) had aquaporin-4 autoimmunity, 2 (13%) had Hashimoto encephalitis, and 1 (6%) had anti-glutamic acid decarboxylase 65 (GAD65) encephalitis. The key presenting features in children with anti-NMDA receptor encephalitis, Hashimoto encephalopathy, and anti-GAD65 encephalitis included encephalopathy, behavioral symptoms, and seizures; patients with aquaporin-4 autoimmunity showed characteristic focal neurologic deficits. Six patients (38%) required intensive care unit admission at presentation. Median time from symptom onset to diagnosis was 55 days (range 6-358). All but 1 patient received immunosuppressive therapy. One child with anti-NMDA receptor encephalitis died due to multiorgan failure. At last follow-up, after a median follow-up time of 1.7 years (range 0.8-3.7), 27% of the children had function-limiting neurologic sequelae. CONCLUSIONS Children with AB-associated IBrainD represent an increasing subgroup among IBrainD; 1 in 4 children has function-limiting residual neurologic deficits. Awareness of the different clinical patterns is important in order to facilitate timely diagnosis and initiate immunosuppressive treatment.
Resumo:
Fine carbonaceous aerosols (CAs) is the key factor influencing the currently filthy air in megacities in China, yet few studies simultaneously focus on the origins of different CAs species using specific and powerful source tracers. Here, we present a detailed source apportionment for various CAs fractions, including organic carbon (OC), water-soluble OC (WSOC), water-insoluble OC (WIOC), elemental carbon (EC) and secondary OC (SOC) in the largest cities of North (Beijing, BJ) and South China (Guangzhou, GZ), using the measurements of radiocarbon and anhydrosugars. Results show that non-fossil fuel sources such as biomass burning and biogenic emission make a significant contribution to the total CAs in Chinese megacities: 56±4 in BJ and 46±5% in GZ, respectively. The relative contributions of primary fossil carbon from coal and liquid petroleum combustions, primary non-fossil carbon and secondary organic carbon (SOC) to total carbon are 19, 28 and 54% in BJ, and 40, 15 and 46% in GZ, respectively. Non-fossil fuel sources account for 52 in BJ and 71% in GZ of SOC, respectively. These results suggest that biomass burning has a greater influence on regional particulate air pollution in North China than in South China. We observed an unabridged haze bloom-decay process in South China, which illustrates that both primary and secondary matter from fossil sources played a key role in the blooming phase of the pollution episode, while haze phase is predominantly driven by fossil-derived secondary organic matter and nitrate.
Resumo:
Monoclonal antibodies (mAbs) inhibiting cytokines have recently emerged as new drug modalities for the treatment of chronic inflammatory diseases. Interleukin-17 (IL-17) is a T-cell-derived central mediator of autoimmunity. Immunization with Qβ-IL-17, a virus-like particle based vaccine, has been shown to produce autoantibodies in mice and was effective in ameliorating disease symptoms in animal models of autoimmunity. To characterize autoantibodies induced by vaccination at the molecular level, we generated mouse mAbs specific for IL-17 and compared them to germline Ig sequences. The variable regions of a selected hypermutated high-affinity anti-IL-17 antibody differed in only three amino acid residues compared to the likely germline progenitor. An antibody, which was backmutated to germline, maintained a surprisingly high affinity (0.5 nM). The ability of the parental hypermutated antibody and the derived germline antibody to block inflammation was subsequently tested in murine models of multiple sclerosis (experimental autoimmune encephalomyelitis), arthritis (collagen-induced arthritis), and psoriasis (imiquimod-induced skin inflammation). Both antibodies were able to delay disease onset and significantly reduced disease severity. Thus, the mouse genome unexpectedly encodes for antibodies with the ability to functionally neutralize IL-17 in vivo.
Resumo:
The p67 sporozoite antigen of Theileria parva has been fused to the C-terminal secretion signal of Escherichia coli hemolysin and expressed in secreted form by attenuated Salmonella dublin aroA strain SL5631. The recombinant p67 antigen was detected in the supernatant of transformed bacterial cultures. Immunization trials in cattle revealed that SL5631 secreting the antigen provoked a 10-fold-higher antibody response to p67 than recombinant SL5631 expressing but not secreting p67. Immunized calves were challenged with a 80% lethal dose of T. parva sporozoites and monitored for the development of infection. Two of three calves immunized intramuscularly with the p67-secreting SL5631 strain were found to be protected, whereas only one of three animals immunized with the nonsecreting p67-expressing SL5631 strain was protected. This is the first demonstration that complete eukaryotic antigens fused to the C-terminal portion of E. coli hemolysin can be exported from attenuated Salmonella strains and that such exported antigens can protect cattle against subsequent parasite challenge.
Resumo:
This work is aimed at improving our current knowledge of the non-enzymatic inecl~anisins involved in brown-rot decay, as well as the exploration of potential applications of a brown-rot mimetic model system in paper recycling processes. The study was divided into two parts. The first part focussed on the chemical mechanisms involved in chelation and reduction of iron by a low molecular weight chelator (isolated from the brown-rot fungus Gloeophyllz~m tmbeum) and its model compound 2,3- dihydroxybenzoic acid (2,3-DHBA). Chelation as well as free radical generation mediated by this system were studied by ESR measurement. The results indicate that the effects of the chelator/iron ratio, the pH, and other reaction parameters on hydroxyl radical generation by a Fenton type system could be determined using ESR spin-trapping techniques. The results also support the hypothesis that superoxide radicals are involved in the chelator-mediated Fenton process. In the second part of the study, the effect of a chelator-mediated Fenton system for the improvement of deinking efficiency and the n~odification of fiber and paper properties was studied. For the deinking study, copy paper was laser printed with an identical standard pattern. Then repulping and flotation operations were performed to remove ink particles. Under properly controlled deinking conditions, the chelator mediated treatment (CMT) resulted in a reduction in dirt count over that of conventional deinking procedures with no significant loss of pulp strength. To study the effect of the chelator system treatment on the quality of pulp with different fines content, a fully bleached hardwood kraft pulp was beaten to different freeness levels and treated with the chelator-mediated free radical system. The result shows that virgin fiber and heavily beaten fiber respond differently to the free radical treatment. Unbeaten fibers become more flexible and easier to collapse after free radical treatment, while beaten fibers show a reduction in fines and small materials after mild free radical treatment.
Resumo:
The overall objective of this thesis was to gain further understanding of the non-enzymatic mechanisms involved in brown-rot wood decay, especially the role of pH, oxalic acid, and low molecular catecholate compounds on the dissolution and reduction of iron, and the formation of reactive oxygen species. Another focus of this study will be the potential application of a biomimetic free radical generating system inspired from fungi wood decay process, especially the non-enzymatic mechanism. The possible pathways of iron uptake and iron redox cycling in non-enzymatic brown-rot decay were investigated in this study. UV-Vis spectroscopy and HPLC were employed to study the kinetics and pathways of the interaction between iron and model catecholate compounds under different pH and chelator/iron molar ratio conditions. Iron chelation and reduction during early non-enzymatic wood decay processes have been studied in this thesis. The results indicate that the effects of the chelator/iron ratio, the pH, and other reaction parameters on the hydroxyl radical generation in a Fenton type system can be determined using ESR spin-trapping techniques. Data also support the hypothesis that superoxide radicals are involved in chelator-mediated Fenton processes. The mechanisms involved in free radical activation of Thermal Mechanical Pulp fibers were investigated. The activation of TMP fibers was evaluated by ESR measurement of free phenoxy radical generation on solid fibers. The results indicate that low molecular weight chelators can improve Fenton reactions, thus in turn stimulating the free radical activation of TMP fibers. A mediated Fenton system was evaluated for decolorization of several types of dyes. The result shows that the Fenton system mediated by a catecholate-type chelator effectively reduced the color of a diluted solution of synthetic dyes after 90 minutes of treatment at room temperature. The results show that compared to a neat Fenton process, the mediated Fenton decolorization process increased the production, and therefore the effective longevity, of hydroxyl radical species to increase the decolorization efficiency.
Resumo:
Diarrhea is a major cause of morbidity and mortality worldwide. Shigella causes up to 20% of all diarrhea. Gut-level immunity and breast-feeding of infants are important factors in protection against shigellosis. The lumen of the gut is lined with lymphocytes which mediate natural killer cytotoxicity, NKC, and antibody-dependent cellular cytotoxicity, ADCC. NKC and ADCC are extracellular, nonphagocytic leukocyte killing mechanisms, which occur in the absence of complement, without prior antigen stimulation, and without regard to the major histocompatibility complex. In this study, virulent and avirulent shigellae were used as the target cells. Leukocytes from peripheral blood, breast milk, and guinea pig gut-associated tissues were used as effector cells. Adult human peripheral blood mononuclear cells and lymphocytes, but not macrophages or polymorphonuclear leukocytes, mediated NKC and ADCC at an optimal effector to target cell ratio of 100:1 in a 60 minute bactericidal assay. An antiserum dilution of 1:10 was optimal for ADCC. Whole, viable lymphocytes were necessary for cytotoxicity. Lymphocyte NKC, but not ADCC, was greatly enhanced by interferon. Lymphocyte NKC occurred against several virulent strains of S. sonnei and a virulent strain of S. flexneri. ADCC (using immune serum directed against S. sonnei) occurred against virulent S. sonnei, but not against avirulent S. sonnei or virulent S. flexneri. Lymphocyte ADCC was not inhibited by the presence of phenylbutazone or by pretreatment of lymphocytes with anti-HNK serum plus complement. Both adherent and non-adherent breast milk leukocytes mediated NKC and ADCC. Mononuclear cells from young children demonstrated normal ADCC, when compared to ADCC of adult cells. Neonatal cord blood and a CGD patient's peripheral blood mononuclear and ploymorphonuclear cells demonstrated high ADCC compared to adult cells. Intraepithelial lymphocytes, spleen cells, and peritoneal cells from normal guinea pigs demonstrated NKC and ADCC. Animals which had been starved and opiated were made susceptible to infection by Shigella. The susceptible animals demonstrated deficient NKC and ADCC with all three leukocyte populations. High NKC and ADCC activity of gut-associated leukocytes from human breast milk and guinea pig tissues may correlate with resistance to infection. ^
Resumo:
Nonsense-mediated decay (NMD) degrades aberrant transcripts containing premature termination codons (PTCs). The T-cell receptor (TCR) locus undergoes error-prone rearrangements that frequently acquire PTCs. Transcripts harboring PTCs from this locus are downregulated much more than transcripts from non-rearranging genes. Efficient splicing is essential for this robust downregulation. ^ Here I show that TCR NMD is unique in another respect: it is not impaired by RNAi-mediated depletion of the NMD factor UPF3b. This differentiates TCR transcripts from classical NMD (assayed using β-globin or triose phosphate isomerase transcripts), which does depend on UPF3b. Depletion of UPF3a, which encodes a gene related to UPF3b, also had no effect on TCR NMD. Mapping experiments identified TCR sequences that when deleted or mutated caused a switch to UPF3b dependence. Since UPF3b dependence was invariably accompanied by less efficient RNA splicing, this suggests that UPF3b-dependent NMD occurs when transcripts are generated by inefficient splicing. Microarray analysis revealed the existence of many NMD-targeted mRNAs from wild-type genes whose downregulation is impervious to UPF3b depletion. This suggests the existence of an alternative NMD pathway independent of UPF3b that is widely used to downregulate the level of both normal and mutant transcripts. ^ During the course of my studies, I also found that the function of UPF3a is fundamentally distinct from that of UPF3b in several aspects. First, classical NMD failed to be impaired by UPF3a depletion, whereas it was reversed by UPF3b depletion. Second, UPF3a depletion had no effect on NMD elicited by tethered UPF2, whereas UPF3b depletion blocked this response. Thus, UPF3a does not function in classical NMD. Third, UPF3b depletion upregulated the expression of UPF3a, whereas UPF3a depletion had no effect on UPF3b expression. This suggests that a UPF3b-mediated feedback network exists that regulates the UPF3a expression. Lastly, UPF3a depletion but not UPF3b depletion significantly upregulated TCR precursor RNAs. This suggests that UPF3a, not UPF3b, functions in the surveillance of precursor RNAs, which typically contain many PTCs in the introns. Collectively, my data suggests that UPF3a and UPF3b are not functionally redundant, as previously thought, but instead have separable functions. ^
Resumo:
Staphylococcus aureus is a globally prevalent pathogen that can cause a wide variety of acute and chronic diseases in both adults and children, in both immune susceptible populations and healthy individuals. Its ability to cause persistent infections has been linked to multiple immune evasion strategies, including Efb-mediated complement inhibition. As new multi-drug-resistant strains emerge, therapeutic alternatives to traditional antibiotics must be developed. These experiments assessed the ability of healthy patient immunoglobulin to cleave Efb and disable the complement-inhibitory properties of Efb in vitro. Levels of immunoglobulin-mediated Efb catalysis varied both between immunoglobulin isoform/isotype and between individuals. Serum IgG showed the strongest catalytic activity of the immunoglobulin isotypes tested. Additionally, IgG hydrolyzed the virulence factor in a way that enabled only minimal binding to the complement component C3b, effectively blocking Efb-mediated inhibition of complement lysis. Salivary IgA and serum IgM did not block Efb-mediated inhibition of complement. Catalytic IgG selectively cleaved Efb and showed no cleavage of a variety of other proteins tested. Catalytic activity of IgG was inhibited by serine protease inhibitors, but not by other protease inhibitors, suggesting a serine-protease mechanism of catalysis. It is proposed that varying concentrations and activity levels of catalytic IgG between healthy individuals and those with current or recurrent S. aureus infections in both adult and pediatric populations be studied in order to assess the potential effectiveness of passive immunization therapy with catalytic monoclonal IgG. ^
Resumo:
Context: Despite tremendous strides in HIV treatment over the past decade, resistance remains a major problem. A growing number of patients develop resistance and require new therapies to suppress viral replication. ^ Objective: To assess the safety of multiple administrations of the anti-CD4 receptor (anti-CD4) monoclonal antibody ibalizumab given as intravenous (IV) infusions, in three dosage regimens, in subjects infected with human immunodeficiency virus (HIV-1). ^ Design: Phase 1, multi-center, open-label, randomized clinical trial comparing the safety, pharmacokinetics and antiviral activity of three dosages of ibalizumab. ^ Setting: Six clinical trial sites in the United States. ^ Participants: A total of twenty-two HIV-positive patients on no anti-retroviral therapy or a stable failing regimen. ^ Intervention: Randomized to one of two treatment groups in Arms A and B followed by non-randomized enrollment in Arm C. Patients randomized to Arm A received 10 mg/kg of ibalizumab every 7 days, for a total of 10 doses; patients randomized to Arm B received a total of six doses of ibalizumab; a single loading dose of 10 mg/kg on Day 1 followed by five maintenance doses of 6 mg/kg every 14 days, starting at Week 1. Patients assigned to Arm C received 25 mg/kg of ibalizumab every 14 days for a total of 5 doses. All patients were followed for safety for an additional 7 to 8 weeks. ^ Main Outcome Measures: Clinical and laboratory assessments of safety and tolerability of multiple administrations of ibalizumab in HIV-infected patients. Secondary measures of efficacy include HIV-1 RNA (viral load) measurements. ^ Results: 21 patients were treatment-experienced and 1 was naïve to HIV therapy. Six patients were failing despite therapy and 15 were on no current HIV treatment. Mean baseline viral load (4.78 log 10; range 3.7-5.9) and CD4+ cell counts (332/μL; range 89-494) were similar across cohorts. Mean peak decreases in viral load from baseline of 0.99 log10(1.11 log10, and 0.96 log 10 occurred by Wk 2 in Cohorts A, B and C, respectively. Viral loads decreased by >1.0 log10 in 64%; 4 patients viral loads were suppressed to < 400 copies/mL. Viral loads returned towards baseline by Week 9 with reduced susceptibility to ibalizumab. CD4+ cell counts rose transiently and returned toward baseline. Maximum median elevations above BL in CD4+ cell counts for Cohorts A, B and C were +257, +198 and +103 cells/μL, respectively and occurred within 3 Wks in 16 of 22 subjects. The half-life of ibalizumab was 3-3.5 days and elimination was characteristic of capacity-limited kinetics. Administration of ibalizumab was well tolerated. Four serious adverse events were reported during the study. None of these events were related to study drug. Headache, nausea and cough were the most frequently reported treatment emergent adverse events and there were no laboratory abnormalities related to study drug. ^ Conclusions: Ibalizumab administered either weekly or bi-weekly was safe, well tolerated, and demonstrated antiviral activity. Further studies with ibalizumab in combination with standard antiretroviral treatments are warranted.^
Resumo:
Staphylococcus aureus is an important human pathogen of global health significance, whose frequency is increasing and whose persistence and versatility allow it to remain established in communities worldwide. An observed significant increase in infections, particularly in children with no predisposing risk factors or medical conditions, led to an investigation into pediatric humoral immune response to Panton-Valentine Leukocidin (PVL) and to other antigens expressed by S. aureus that represent the important classes of virulence activities. Patients who were diagnosed with staphylococcal infections were enrolled (n=60), and serum samples collected at the time of admission were analyzed using ELISA and Western blot to screen for immune response to the panel of recombinant proteins. The dominant circulating immunoglobulin titers in this pediatric population were primarily IgG, were specific, and were directed against LukF and LukS, while suppression of other important virulence factors in the presence of PVL was suggested. Patients with invasive infections (osteomyelitis, pneumonia or myositis) had higher titers against LukF and LukS compared to patients with non-invasive infections (abscesses, cellulitis or lymphadenitis). In patients with osteomyelitis, antibody responses to LukF and LukS were higher than antibody responses to any other virulence factor examined. This description of immune response to selected virulence factors of S. aureus caused by isolates of the USA300 lineage in children is novel. Antibody titers also correlated with markers of inflammation. The significance of these correlations remains to be understood.^