966 resultados para Analog electronic systems
Resumo:
A spectrally efficient strategy is proposed for cooperative multiple access (CMA) channels in a centralized communication environment with $N$ users. By applying superposition coding, each user will transmit a mixture containing its own information as well as the other users', which means that each user shares parts of its power with the others. The use of superposition coding in cooperative networks was first proposed in , which will be generalized to a multiple-user scenario in this paper. Since the proposed CMA system can be seen as a precoded point-to-point multiple-antenna system, its performance can be best evaluated using the diversity-multiplexing tradeoff. By carefully categorizing the outage events, the diversity-multiplexing tradeoff can be obtained, which shows that the proposed cooperative strategy can achieve larger diversity/multiplexing gain than the compared transmission schemes at any diversity/multiplexing gain. Furthermore, it is demonstrated that the proposed strategy can achieve optimal tradeoff for multiplexing gains $0leq r leq 1$ whereas the compared cooperative scheme is only optimal for $0leq r leq ({1}/{N})$. As discussed in the paper, such superiority of the proposed CMA system is due to the fact that the relaying transmission does not consume extra channel use and, hence, the deteriorating effect of cooperative communication on the data rate is effectively limited.
Resumo:
High-speed field-programmable gate array (FPGA) implementations of an adaptive least mean square (LMS) filter with application in an electronic support measures (ESM) digital receiver, are presented. They employ "fine-grained" pipelining, i.e., pipelining within the processor and result in an increased output latency when used in the LMS recursive system. Therefore, the major challenge is to maintain a low latency output whilst increasing the pipeline stage in the filter for higher speeds. Using the delayed LMS (DLMS) algorithm, fine-grained pipelined FPGA implementations using both the direct form (DF) and the transposed form (TF) are considered and compared. It is shown that the direct form LMS filter utilizes the FPGA resources more efficiently thereby allowing a 120 MHz sampling rate.
Resumo:
Treasure et al. (2004) recently proposed a new sub space-monitoring technique, based on the N4SID algorithm, within the multivariate statistical process control framework. This dynamic-monitoring method requires considerably fewer variables to be analysed when compared with dynamic principal component analysis (PCA). The contribution charts and variable reconstruction, traditionally employed for static PCA, are analysed in a dynamic context. The contribution charts and variable reconstruction may be affected by the ratio of the number of retained components to the total number of analysed variables. Particular problems arise if this ratio is large and a new reconstruction chart is introduced to overcome these. The utility of such a dynamic contribution chart and variable reconstruction is shown in a simulation and by application to industrial data from a distillation unit.
Resumo:
Bodyworn antennas are found in a wide range of medical, military and personal communication applications, yet reliable communication from the surface of the human body still presents a range of engineering challenges. At UHF and microwave frequencies, bodyworn antennas can suffer from reduced efficiency due to electromagnetic absorption in tissue, radiation pattern fragmentation and variations in feed-point impedance. The significance and nature of these effects are system specific and depend on the operating frequency, propagation environment and physical constraints on the antenna itself. This paper describes how numerical electromagnetic modelling techniques such as FDTD (finite-difference time-domain) can be used in the design of bodyworn antennas. Examples are presented for 418 MHz, 916 .5 MHz and 2 . 45 GHz, in the context of both biomedical signalling and wireless personal-area networking applications such as the Bluetooth(TM)* wireless technology.
Resumo:
The present paper proposes for the first time, a novel design methodology based on the optimization of source/drain extension (SDE) regions to significantly improve the trade-off between intrinsic voltage gain (A(vo)) and cut-off frequency (f(T)) in nanoscale double gate (DG) devices. Our results show that an optimally designed 25 nm gate length SDE region engineered DG MOSFET operating at drain current of 10 mu A/mu m, exhibits up to 65% improvement in intrinsic voltage gain and 85% in cut-off frequency over devices designed with abrupt SIDE regions. The influence of spacer width, lateral source/drain doping gradient and symmetric as well as asymmetrically designed SDE regions on key analog figures of merit (FOM) such as transconductance (g(m)), transconductance-to-current ratio (g(m)/I-ds), Early voltage (V-EA), output conductance (g(ds)) and gate capacitances are examined in detail. The present work provides new opportunities for realizing future low-voltage/low-power analog circuits with nanoscale SDE engineered DG MOSFETs. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we analyze the enormous potential of engineering source/drain extension (SDE) regions in FinFETs for ultra-low-voltage (ULV) analog applications. SDE region design can simultaneously improve two key analog figures of merit (FOM)-intrinsic de gain (A(vo)) and cutoff frequency (f(T)) for 60 and 30 nm FinFETs operated at low drive current (J(ds) = 5 mu A/mu m). The improved Avo and fT are nearly twice compared to those of devices with abrupt SDE regions. The influence of the SDE region profile and its impact on analog FOM is extensively analyzed. Results show that SDE region optimization provides an additional degree of freedom apart from device parameters (fin width and aspect ratio) to design future nanoscale analog devices. The results are analyzed in terms of spacer-to-straggle ratio a new design parameter for SDE engineered devices. This paper provides new opportunities for realizing future ULV/low-power analog design with FinFETs.
Resumo:
In this letter, we propose a novel design methodology for engineering source/drain extension (SDE) regions to simultaneously improve intrinsic dc gain (A(vo)) and cutoff frequency (f(T)) of 25-nm gate-length FinFETs operated at low drain-current (I-ds = 10 mu A/mu m). SDE region optimization in 25-nm FinFETs results in exceptionally high values of Avo (similar to 45 dB) and f(T) (similar to 70 GHz), which is nearly 2.5 times greater when compared to devices designed with abrupt SDE regions. The influence of spacer width, lateral source/drain doping gradient, and the spacer-to-gradient ratio on key analog figures of merit is examined in detail. This letter provides new opportunities for realizing future low-voltage/low-power analog design with nanoscale SDE-engineered FinFETs.
Resumo:
Double gate fully depleted silicon-on-insulator (DGSOI) is recognized as a possible solution when the physical gate length L-G reduces to 25nm for the 65nm node on the ITRS CMOS roadmap. In this paper, scaling guidelines are introduced to optimally design a nanoscale DGSOI. For this reason, the sensitivity of gain, f(T) and f(max) to each of the key geometric and technological parameters of the DGSOI are assessed and quantified using MixedMode simulation. The impact of the parasitic resistance and capacitance on analog device performance is systematically analysed. By comparing analog performance with a single gate (SG), it has been found that intrinsic gain in DGSOI is 4 times higher but its fT was found to be comparable to that of SGSOI at different regions of transistor operation. However, the extracted fmax in SG SOI was higher (similar to 40%) compared to DGSOI due to its lower capacitance.
Resumo:
Subspace monitoring has recently been proposed as a condition monitoring tool that requires considerably fewer variables to be analysed compared to dynamic principal component analysis (PCA). This paper analyses subspace monitoring in identifying and isolating fault conditions, which reveals that the existing work suffers from inherent limitations if complex fault senarios arise. Based on the assumption that the fault signature is deterministic while the monitored variables are stochastic, the paper introduces a regression-based reconstruction technique to overcome these limitations. The utility of the proposed fault identification and isolation method is shown using a simulation example and the analysis of experimental data from an industrial reactive distillation unit.
Resumo:
A simple approach is proposed for disturbance attenuation in multivariable linear systems via dynamical output compensators based on complete parametric eigenstructure assignment. The basic idea is to minimise the H-2 norm of the disturbance-output transfer function using the design freedom provided by eigenstructure assignment. For robustness, the closed-loop system is restricted to be nondefective. Besides the design parameters, the closed-loop eigenvalues are also optimised within desired regions on the left-half complex plane to ensure both closed-loop stability and dynamical performance. With the proposed approach, additional closed-loop specifications can be easily achieved. As a demonstration, robust pole assignment, in the sense that the closed-loop eigenvalues are as insensitive as possible to open-loop system parameter perturbations, is treated. Application of the proposed approach to robust control of a magnetic bearing with a pair of opposing electromagnets and a rigid rotor is discussed.
Resumo:
In this paper, an analysis of radio channel characteristics for single- and multiple-antenna bodyworn systems for use in body-to-body communications is presented. The work was based on an extensive measurement campaign conducted at 2.45 GHz representative of an indoor sweep and search scenario for fire and rescue personnel. Using maximum-likelihood estimation in conjunction with the Akaike information criterion (AIC), five candidate probability distributions were investigated and from these the kappa - mu distribution was found to best describe small-scale fading observed in the body-to-body channels. Additional channel parameters such as autocorrelation and the cross-correlation coefficient between fading signal envelopes were also analyzed. Low cross correlation and small differences in mean signal levels between potential dual-branch diversity receivers suggested that the prospect of successfully implementing diversity in this type application is extremely good. Moreover, using selection combination, maximal ratio, and equal gain combining, up to 8.69-dB diversity gain can be made available when four spatially separated antennas are used at the receiver. Additional improvements in the combined envelopes through lower level crossing rates and fade durations at low signal levels were also observed.
Resumo:
In this paper, we propose a novel linear transmit precoding strategy for multiple-input, multiple-output (MIMO) systems employing improper signal constellations. In particular, improved zero-forcing (ZF) and minimum mean square error (MMSE) precoders are derived based on modified cost functions, and are shown to achieve a superior performance without loss of spectrum efficiency compared to the conventional linear and nonlinear precoders. The superiority of the proposed precoders over the conventional solutions are verified by both simulation and analytical results. The novel approach to precoding design is also applied to the case of an imperfect channel estimate with a known error covariance as well as to the multi-user scenario where precoding based on the nullspace of channel transmission matrix is employed to decouple multi-user channels. In both cases, the improved precoding schemes yield significant performance gain compared to the conventional counterparts.
Resumo:
This letter derives mathematical expressions for the received signal-to-interference-plus-noise ratio (SINR) of uplink Single Carrier (SC) Frequency Division Multiple Access (FDMA) multiuser MIMO systems. An improved frequency domain receiver algorithm is derived for the studied systems, and is shown to be significantly superior to the conventional linear MMSE based receiver in terms of SINR and bit error rate (BER) performance.
Resumo:
BACKGROUND: Despite the fact that outreach and early warning systems (EWS) are an integral part of a hospital wide systems approach to improve the early identification and management of deteriorating patients on general hospital wards, the widespread implementation of these interventions in practice is not based on robust research evidence. OBJECTIVES: The primary objective was to determine the impact of critical care outreach services on hospital mortality rates. Secondary objectives included determining the effect of outreach services on intensive care unit (ICU) admission patterns, length of hospital stay and adverse events. SEARCH STRATEGY: The review authors searched the following electronic databases: EPOC Specialised Register, The Cochrane Central Register of Controlled Trials (CENTRAL) and other Cochrane databases (all on The Cochrane Library 2006, Issue 3), MEDLINE (1996-June week 3 2006), EMBASE (1974-week 26 2006), CINAHL (1982-July week 5 2006), First Search (1992-2005) and CAB Health (1990-July 2006); also reference lists of relevant articles, conference abstracts, and made contact with experts and critical care organisations for further information. SELECTION CRITERIA: Randomised controlled trials (RCTs), controlled clinical trials (CCTs), controlled before and after studies (CBAs) and interrupted time series designs (ITS) which measured hospital mortality, unanticipated ICU admissions, ICU readmissions, length of hospital stay and adverse events following implementation of outreach and EWS in a general hospital ward to identify deteriorating adult patients versus general hospital ward setting without outreach and EWS were included in the review. DATA COLLECTION AND ANALYSIS: Three review authors independently extracted data and two review authors assessed the methodological quality of the included studies. Meta-analysis was not possible due to heterogeneity. Summary statistics and descriptive summaries of primary and secondary outcomes are presented for each study. MAIN RESULTS: Two cluster-randomised control trials were included: one randomised at hospital level (23 hospitals in Australia) and one at ward level (16 wards in the UK). The primary outcome in the Australian trial (a composite score comprising incidence of unexpected cardiac arrests, unexpected deaths and unplanned ICU admissions) showed no statistical significant difference between control and medical emergency team (MET) hospitals (adjusted P value 0.640; adjusted odds ratio (OR) 0.98; 95% confidence interval (CI) 0.83 to 1.16). The UK-based trial found that outreach reduced in-hospital mortality (adjusted OR 0.52; 95% CI 0.32 to 0.85) compared with the control group. AUTHORS' CONCLUSIONS: The evidence from this review highlights the diversity and poor methodological quality of most studies investigating outreach. The results of the two included studies showed either no evidence of the effectiveness of outreach or a reduction in overall mortality in patients receiving outreach. The lack of evidence on outreach requires further multi-site RCT's to determine potential effectiveness.