945 resultados para Anaerobic Threshold


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: This study was conducted to determine the component that causes the disease in rheumatoid arthritis (RA), which shows great resemblance to periodontitis in a pathologic context. MATERIALS AND METHODS: Within this study, the pathogen-specific IgG levels formed against Porphyromonas gingivalis FDC 381, Prevotella melaninogenica ATCC 25845, Actinobacillus actinomycetemcomitans Y4, Bacteroides forsythus ATCC 43047, and Prevotella intermedia 25611 oral bacteria were researched from the blood serum samples of 30 RA patients and 20 healthy controls with the enzyme-linked immunosorbent assay (ELISA) method. RESULTS: The IgG levels of P gingivalis, P intermedia, P melaninogenica, and B forsythus were found to be significantly higher in RA patients when compared with those of the controls. Of the other bacteria antibodies, A actinomycetemcomitans was not found at greater levels in RA serum samples in comparison with the healthy samples. CONCLUSION: The antibodies formed against P gingivalis, P intermedia, P melaninogenica, and B forsythus could be important to the etiopathogenesis of RA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is widely accepted that cellulose is the rate-limiting substrate in the anaerobic digestion of organic solid wastes and that cellulose solubilisation is largely mediated by surface attached bacteria. However, little is known about the identity or the ecophysiology of cellulolytic microorganisms from landfills and anaerobic digesters. The aim of this study was to investigate an enriched cellulolytic microbial community from an anaerobic batch reactor. Chemical oxygen demand balancing was used to calculate the cellulose solubilisation rate and the degree of cellulose solubilisation. Fluorescence in situ hybridisation (FISH) was used to assess the relative abundance and physical location of three groups of bacteria belonging to the Clostridium lineage of the Firmicutes that have been implicated as the dominant cellulose degraders in this system. Quantitation of the relative abundance using FISH showed that there were changes in the microbial community structure throughout the digestion. However, comparison of these results to the process data reveals that these changes had no impact on the cellulose solubilisation in the reactor. The rate of cellulose solubilisation was approximately stable for much of the digestion despite changes in the cellulolytic population. The solubilisation rate appears to be most strongly affected by the rate of surface area colonisation and the biofilm architecture with the accepted model of first order kinetics due to surface area limitation applying only when the cellulose particles are fully covered with a thin layer of cells. (c) 2005 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigation of the secondary nucleation threshold (SNT) of alpha-glucose monohydrate was conducted in aqueous solutions in agitated batch systems for the temperature range 10 to 40 degrees C. The width of the SNT decreased as the induction time increased and was found to be temperature independent when supersaturation was based on the absolute concentration driving force. Nonnucleating seeded batch bulk crystallizations of this sugar were performed isothermally in the same temperature range as the SNT experiments, and within the SNT region to avoid nucleation. The growth kinetics were found to be linearly dependent on the supersaturation of total glucose in the system when the mutarotation reaction is not rate limiting. The growth rate constant increases with increasing temperature and follows an Arrhenius relationship with an activation energy of 50 +/- 2 kJ/mol. alpha-Glucose monohydrate shows significant crystal growth rate dispersion (GRD). For the seeds used, the 95% range of growth rates was within a factor of 6 for seeds with a narrow particle size distribution, and 8 for seeds with a wider distribution that was used at 25 degrees C. The results will be used to model the significance of the mutarotation reaction on the overall crystallization rate of D-glucose in industrial crystallization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the microbial competition observed in enhanced biological phosphorus removal (EBPR) systems, an undesirable group of micro-organisms known as glycogen-accumulating organisms (GAOs) compete for carbon in the anaerobic period with the desired polyphosphate-accumulating organisms (PAOs). Some studies have suggested that a propionate carbon source provides PAOs with a competitive advantage over GAOs in EBPR systems; however, the metabolism of GAOs with this carbon source has not been previously investigated. In this study, GAOs were enriched in a laboratory-scale bioreactor with propionate as the sole carbon source, in an effort to better understand their biochemical processes. Based on comprehensive solid-, liquid- and gas-phase chemical analytical data from the bioreactor, a metabolic model was proposed for the metabolism of propionate by GAOs. The model adequately described the anaerobic stoichiometry observed through chemical analysis, and can be a valuable tool for further investigation of the competition between PAOs and GAOs, and for the optimization of the EBPR process. A group of Alphaproteobacteria dominated the biomass (96% of Bacteria) from this bioreactor, while post-fluorescence in situ hybridization (FISH) chemical staining confirmed that these Alphaproteobacteria produced poly-beta-hydroxyalkanoates (PHAs) anaerobically and utilized them aerobically, demonstrating that they were putative GAOs. Some of the Alphaproteobacteria were related to Defluvicoccus vanus (16% of Bacteria), but the specific identity of many could not be determined by FISH. Further investigation into the identity of other GAOs is necessary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An innovative method for modelling biological processes under anaerobic conditions is presented and discussed. The method is based on titrimetric and off-gas measurements. Titrimetric data is recorded as the addition rate of hydroxyl ions or protons that is required to maintain pH in a bioreactor at a constant level. An off-gas analysis arrangement measures, among other things, the transfer rate of carbon dioxide. The integration of these signals results in a continuous signal which is solely related to the biological reactions. When coupled with a mathematical model of the biological reactions, the signal allows a detailed characterisation of these reactions, which would otherwise be difficult to achieve. Two applications of the method to the enhanced biological phosphorus removal processes are presented and discussed to demonstrate the principle and effectiveness of the method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anaerobic digestion is a multistep process, mediated by a functionally and phylogenetically diverse microbial population. One of the crucial steps is oxidation of organic acids, with electron transfer via hydrogen or formate from acetogenic bacteria to methanogens. This syntrophic microbiological process is strongly restricted by a thermodynamic limitation on the allowable hydrogen or formate concentration. In order to study this process in more detail, we developed an individual-based biofilm model which enables to describe the processes at a microbial resolution. The biochemical model is the ADM1, implemented in a multidimensional domain. With this model, we evaluated three important issues for the syntrophic relationship: (i) is there a fundamental difference in using hydrogen or formate as electron carrier? (ii) Does a thermodynamic-based inhibition function produced substantially different results from an empirical function? and; (iii) Does the physical colocation of acetogens and methanogens follow directly from a general model. Hydrogen or formate as electron carrier had no substantial impact on model results. Standard inhibition functions or thermodynamic inhibition function gave similar results at larger substrate field grid sizes (> 10 mu m), but at smaller grid sizes, the thermodynamic-based function reduced the number of cells with long interspecies distances (> 2.5 mu m). Therefore, a very fine grid resolution is needed to reflect differences between the thermodynamic function, and a more generic inhibition form. The co-location of syntrophic bacteria was well predicted without a need to assume a microbiological based mechanism (e.g., through chemotaxis) of biofilm formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen consumption rates (OCR), aerobic mineralization and sulfate reduction rates (SRR) were studied in the permeable carbonate reef sediments of Heron Reef, Australia. We selected 4 stations with different hydrodynamic regimes for this study. In situ oxygen penetration into the sediments was measured with an autonomous microsensor profiler. Areal OCR were quantified from the measured oxygen penetration depth and volumetric OCR. Oxygen penetration and dynamics (median penetration depths at the 4 stations ranged between 0.3 and 2.2 cm), OCR (median 57 to 196 mmol C m(-2) d(-1)), aerobic mineralization (median 24 to 176 mmol C m(-2) d(-1)) and SRR (median 9 to 42 mmol C m(-2) d(-1)) were highly variable between sites. The supply of oxygen by pore water advection was a major cause for high mineralization rates by stimulating aerobic mineralization at all sites. However, estimated bottom water filtration rates could not explain the differences in volumetric OCR and SRR between the 4 stations. This suggests that local mineralization rates are additionally controlled by factors other than current driven pore water advection, e.g. by the distribution of the benthic fauna or by local differences in labile organic carbon supply from sources such as benthic photosynthesis. Carbon mineralization rates were among the highest reported for coral reef sediments, stressing the role of these sediments in the functioning of the reef ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper elaborates the notion of balanced'' financial development that is contingent on a country's general level of development. We develop an empirical framework to address this point, referring to threshold regressions and a bootstrap test for structural shift in a growth equation. We find that countries gain less from financial activity, if the latter fails to keep up with or exceeds what would follow from a balanced expansion path. These analyses contribute to the finance and growth literature in providing empirical support for the balanced'' financial development hypothesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bacteria that mediate the anaerobic oxidation of ammonium (anammox) are detected worldwide in natural and man-made ecosystems, and contribute up to 50% to the loss of inorganic nitrogen in the oceans. Two different anammox species rarely live in a single habitat, suggesting that each species has a defined but yet unknown niche. Here we describe a new anaerobic ammonium oxidizing bacterium with a defined niche: the co-oxidation of propionate and ammonium. The new anammox species was enriched in a laboratory scale bioreactor in the presence of ammonium and propionate. Interestingly, this particular anammox species could out-compete other anammox bacteria and heterotrophic denitrifiers for the oxidation of propionate in the presence of ammonium, nitrite and nitrate. We provisionally named the new species Candidatus "Anammoxoglobus propionicus".

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to demonstrate at pilot scale a high level of energy recovery from sewage utilising a primary Anaerobic Migrating Bed Reactor (AMBR) operating at ambient temperature to convert COD to methane. The focus is the reduction in non-renewable CO2 emissions resulting from reduced energy requirements for sewage treatment. A pilot AMBR was operated on screened sewage over the period June 2003 to September 2004. The study was divided into two experimental phases. In Phase 1 the process operated at a feed rate of 10 L/h (HRT 50 h), SRT 63 days, average temperature 28 degrees C and mixing time fraction 0.05. In Phase 2 the operating parameters were 20 L/h, 26 days, 16 degrees C and 0.025. Methane production was 66% of total sewage COD in Phase 1 and 23% in Phase 2. Gas mixing of the reactor provided micro-aeration which suppressed sulphide production. Intermittent gas mixing at a useful power input of 6 W/m(3) provided satisfactory process performance in both phases. Energy consumption for mixing was about 1.5% of the energy conversion to methane in both operating phases. Comparative analysis with previously published data confirmed that methane supersaturation resulted in significant losses of methane in the effluent of anaerobic treatment systems. No cases have been reported where methane was considered to be supersaturated in the effluent. We have shown that methane supersaturation is likely to be significant and that methane losses in the effluent are likely to have been greater than previously predicted. Dissolved methane concentrations were measured at up to 2.2 times the saturation concentration relative to the mixing gas composition. However, this study has also demonstrated that despite methane supersaturation occurring, microaeration can result in significantly lower losses of methane in the effluent (< 11% in this study), and has demonstrated that anaerobic sewage treatment can genuinely provide energy recovery. The goal of demonstrating a high level of energy recovery in an ambient anaerobic bioreactor was achieved. An AMBR operating at ambient temperature can achieve up to 70% conversion of sewage COD to methane, depending on SRT and temperature. (c) 2006 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to compare the outcomes associated with two differing right unilateral (RUL) electroconvulsive therapy (ECT) dosing protocols: 2-3X seizure threshold (2-3X ST) and fixed high dose (FHD) at 353 mC. A retrospective chart review was performed to compare patient outcomes during the implementation of two different dosing protocols: 2-3X ST from October 2000 to May 2001 and FHD from June 2001 to February 2002. A total of 56 patients received ECT under the 2-3X ST protocol, and 46 received ECT under the FHD protocol. In total, 13.6% of patients receiving ECT according to the 2-3X ST protocol received more than 12 ECT, whereas none of the FHD group received more than 12 ECT. The mean number of ECT per treatment course reduced significantly from 7.6 to 5.7 following the switch from the 2-3X ST protocol to the FHD protocol. There were no significant differences between the two groups in the incidence of adverse cognitive effects. ECT practitioners adhered to the 2-3X ST protocol for only 51.8% of ECT courses, with protocol adherence improving to 87% following introduction of the FHD protocol. Although this naturalistic retrospective chart survey had significant methodological limitations, it found that practitioners are more likely to correctly adhere to a fixed dose protocol, therefore, increasing its 'real world' effectiveness in comparison to titrated suprathreshold dosing techniques. The FHD protocol was associated with shorter courses of ECT than the 2-3X ST protocol, with no significant difference between the two protocols in clinically discernable adverse cognitive effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-stage thermophilic-mesophilic anaerobic digestion pilot-plant was operated solely on waste activated sludge (WAS) from a biological nutrient removal (BNR) plant. The first-stage thermophilic reactor (HRT 2 days) was operated at 47, 54 and 60 degrees C. The second-stage mesophilic digester (HRT 15 days) was held at a constant temperature of 36-37 degrees C. For comparison with a single-stage mesophilic process, the mesophilic digester was also operated separately with an HRT of 17 days and temperature of 36-37 degrees C. The results showed a truly thermophilic stage (60 degrees C) was essential to achieve good WAS degradation. The lower thermophilic temperatures examined did not offer advantages over single-stage mesophilic treatment in terms of COD and VS removal. At a thermophilic temperature of 60 degrees C, the plant achieved 35% VS reduction, representing a 46% increase compared to the single-stage mesophilic digester. This is a significant level of degradation which could make such a process viable in situations where there is no primary sludge generated. The fate of the biologically stored phosphorus in this BNR sludge was also investigated. Over 80% of the incoming phosphorus remained bound up with the solids and was not released into solution during the WAS digestion. Therefore only a small fraction of phosphorus would be recycled to the main treatment plant with the dewatering stream.