946 resultados para Ames MPF assay
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographical references.
Resumo:
Includes index.
Resumo:
"Project 16030 ELZ; Program element 1BA027."
Resumo:
The study was a comparison of bioassay and HPLC analysis of artesunate (ARTS) and dihydroartemisinin (DHA) in plasma. ARTS and DHA in plasma samples from patients treated with ARTS were quantified by HPLC and expressed as DHA. DHA-equivalents in the same plasma samples were measured using a standardised parasite culture technique. DHA concentrations estimated by both methods were highly correlated (bioassay = 0.96 x HPLC + 11.0; r(2) = 0.92). At high concentrations ( > 12 000 nmol/l) bioassay sometimes overestimated DHA. Bioassay of active drug in plasma correlates well with specific chemical analysis by HPLC. ARTS and DHA appear to account for the total antimalarial activity in plasma after ARTS administration. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The aim of this study was to develop a simple, field-practical, and effective in vitro method for determining the sensitivity of fresh erythrocytic Plasmodium vivax isolates to a range of antimalarials. The method used is a modification of the standard World Health Organization (WHO) microtest for determination of P.falciparum drug sensitivity. The WHO method was modified by removing leukocytes and using a growth medium supplemented with AB(+) serum. We successfully carried out 34 in vitro drug assays on 39 P. vivax isolates collected from the Mae Sod malaria clinic, Tak Province, Thailand. The mean percentage of parasites maturing to schizonts (six or more merozoites) in control wells was 66.5% +/- 5.9% (standard deviation). This level of growth in the control wells enabled rapid microscopic determination (5 min per isolate per drug) of the MICs of chloroquine, dihydroartemisinin, WR238605 (tafenoquine), and sulfadoxine. P. vivax was relatively sensitive to chloroquine (MIC = 160 ng/ml, 50% inhibitory concentration [IC50] = 49.8 ng/ml) and dihydroartemisinin (MIC = 0.5 ng/ml, IC50 = 0.47 ng/ml). The poor response of P. vivax to both tafenoquine (MIC = 14,000 ng/ml, IC50 = 9,739 ng/ml) and sulfadoxine (MIC = 500,000 ng/ml, IC50 = 249,000 ng/ml) was due to the slow action of these drugs and the innate resistance of P. vivax to sulfadoxine. The in vitro assay developed in our study should be useful both for assessing the antimalarial sensitivity of P. vivax populations and for screening new antimalarials in the absence of long-term P. vivax cultures.
Resumo:
The in vitro growth of erythroid colonies in the absence of erythropoietin, known as endogenous erythroid colonies (EEC) forms part of the diagnostic criteria for polycythaemia vera (PV). The availability of EEC culture in routine laboratory setting is limited as culture methods are technically demanding, difficult to standardize, expensive and laborious. In this study, we assessed the performance characteristics of a simplified method using ammonium chloride red cell lysis followed by culture on commercially available, batch-tested, methylcellulose media. Seventy-six patients were included; four were secondarily excluded on the basis of culture failure. Of the 14 patients with PV, 13 (93%) were positive for EEC on at least one occasion: 90% (nine of 10) of bone marrow and 67% (six of nine) of peripheral blood specimens were positive. All 30 patients with secondary polycythaemia (n = 12) or apparent polycythaemia (n = 18) were negative for EEC. The incidence of EEC in idiopathic erythrocytosis was 40% (eight of 28); 50% (five of 10) in those who met one of the minor criteria for PV and 17% (three of 18) in those who did not. We conclude that our EEC assay yield results comparable with that of more elaborate methods.
Resumo:
Dendritic cells (DC) from distinct DC subsets are essential contributors to normal human immune responses. Despite this, reliable assays that enable DC to be counted precisely have been slow to evolve. We have now developed a new single-platform flow cytometric assay based on TruCOUN(TM) beads and the whole blood Lyse/No-Wash protocol that allows precise counting of the CD14(-) blood DC subsets: CD11c(+)CD16(-) DC, CD11c(+)CD16(+) DC, CD123(hi) DC, CD1c(+) DC and BDCA-3(+) DC. This assay requires 50 mul of whole blood; does not rely on a hematology blood analyser for the absolute DC counts; allows DC counting in EDTA samples 24 It after collection; and is suitable for cord blood and peripheral blood. The data is highly reproducible with intra-assay and inter-assay coefficients of variation less than 3% and 11%, respectively. This assay does not produce the DC-T lymphocyte conjugates that result in DC counting abnormalities in conventional gradient-density separation procedures. Using the TruCOUNT assay, we established that absolute blood DC counts reduce with age in healthy individuals. In preliminary studies, we found a significantly lower absolute blood CD11c(+)CD16(+) DC count in stage III/IV versus stage I/II breast carcinoma patients and a lower absolute blood CD123(hi) DC count in multiple myeloma patients, compared to age-matched controls. These data indicate that scientific progress in DC counting technology will lead to the global standardization of DC counting and allow clinically meaningful data to be obtained. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Cell culture and direct fluorescent antibody (DFA) assays have been traditionally used for the laboratory diagnosis of respiratory viral infections. Multiplex reverse transcriptase polymerase chain reaction (m-RT-PCR) is a sensitive, specific, and rapid method for detecting several DNIA and RNA viruses in a single specimen. We developed a m-RT-PCR assay that utilizes multiple virus-specific primer pairs in a single reaction mix combined with an enzyme-linked amplicon hybridization assay (ELAHA) using virus-specific probes targeting unique gene sequences for each virus. Using this m-RT-PCR-ELAHA, we examined the presence of seven respiratory viruses in 598 nasopharyngeal aspirate (NPA) samples from patients with suspected respiratory infection. The specificity of each assay was 100%. The sensitivity of the DFA was 79.7% and the combined DFA/culture amplified-DFA (CA-DFA) was 88.6% when compared to the m-RT-PCR-ELAHA. Of the 598 NPA specimens screened by m-RT-PCR-ELAHA, 3% were positive for adenovirus (ADM), 2% for influenza A (Flu A) virus, 0.3% for influenza B (Flu B) virus, 1% for parainfluenza type I virus (PIV1), 1% for parainfluenza type 2 virus (PIV2), 5.5% for parainfluenza type 3 virus (PIV3), and 21% for respiratory syncytial virus (RSV). The enhanced sensitivity, specificity, rapid result turnaround time and reduced expense of the m-RT-PCR-ELAHA compared to DFA and CA-DFA, suggests that this assay would be a significant improvement over traditional assays for the detection of respiratory viruses in a clinical laboratory.
Resumo:
Human polyomaviruses JCV and BKV can cause several clinical manifestations in immunocompromised hosts, including progressive multifocal leukoencephalopathy (PML) and haemorrhagic cystitis. Molecular detection by polymerase chain reaction (PCR) is recognised as a sensitive and specific method for detecting human polyomaviruses in clinical samples. In this study, we developed a PCR assay using a single primer pair to amplify a segment of the VP1 gene of JCV and BKV. An enzyme linked amplicon hybridisation assay (ELAHA) using species-specific biotinylated oligonucleotide probes was used to differentiate between JCV and BKV. This assay (VP1-PCR-ELAHA) was evaluated and compared to a PCR assay targeting the human polyomavirus T antigen gene (pol-PCR). DNA sequencing was used to confirm the polyomavirus species identified by the VP1-PCR-ELAHA and to determine the subtype of each JCV isolate. A total of 297 urine specimens were tested and human polyomavirus was detected in 105 specimens (35.4%) by both PCR assays. The differentiation of JCV and BKV by the VP1-PCR-ELAHA showed good agreement with the results of DNA sequencing. Further, DNA sequencing of the JCV positive specimens showed the most prevalent JCV subtype in our cohort was 2a (27%) followed by 1b (20%), 1a (15%), 2c (14%), 4 (14%) and 2b (10%). The results of this study show that the VP1-PCR-ELAHA is a sensitive, specific and rapid method for detecting and differentiating human polyomaviruses JC and BK and is highly suitable for routine use in the clinical laboratory. (C) 2004 Wiley-Liss, Inc.
Resumo:
The Roche Cobas Amplicor system is widely used for the detection of Neisseria gonorrhoeae but is known to cross react with some commensal Neisseria spp. Therefore, a confirmatory test is required. The most common target for confirmatory tests is the cppB gene of N. gonorrhoeae. However, the cppB gene is also present in other Neisseria spp. and is absent in some N. gonorrhoeae isolates. As a result, laboratories targeting this gene run the risk of obtaining both false-positive and false-negative results. In the study presented here, a newly developed N. gonorrhoeae LightCycler assay (NGpapLC) targeting the N. gonorrhoeae porA pseudogene was tested. The NGpapLC assay was used to test 282 clinical samples, and the results were compared to those obtained using a testing algorithm combining the Cobas Amplicor System (Roche Diagnostics, Sydney, Australia) and an in-house LightCycler assay targeting the cppB gene (cppB-LC). In addition, the specificity of the NGpapLC assay was investigated by testing a broad panel of bacteria including isolates of several Neisseria spp. The NGpapLC assay proved to have comparable clinical sensitivity to the cppB-LC assay. In addition; testing of the bacterial panel showed the NGpapLC assay to be highly specific for N. gonorrhoeae DNA. The results of this study show the NGpapLC assay is a suitable alternative to the cppB-LC assay for confirmation of N. gonorrhoeae-positive results obtained with Cobas Amplicor.
Resumo:
A double-site enzyme-linked lactate dehydrogenase enzyme inummodetection assay was tested against field isolates of Plasmodium falciparum for assessing in vitro drug susceptibilities to a wide range of antimalarial drugs. Its sensitivity allowed the use of parasite densities as low as 200 parasites/mul of blood. Being a nonisotopic, colorimetric assay, it lies within the capabilities of a modest laboratory at the district level.
Resumo:
With the implementation of programs to control lymphatic filariasis and soil-transmitted helminths using broad spectrum anthelmintics, including albendazole and ivermectin, there is a need to develop an in vitro assay for detection of drug resistance. This report describes an in vitro assay for measuring the effects of ivermectin and benzimidazoles on the motility of larvae of the hookworm species Ancylostoma ceylanicum, A. caninum, and Necator americanus, and Strongyloides species including Strongyloides stercoralis, and S. ratti. A dose-response relationship was demonstrated with each of the parasite species, with distinct differences observed between the various species. In pilot field testing of the assay with N. americanus larvae recovered from human fecal samples, a dose-response relationship was observed with ivermectin. While the assay has demonstrated the ability to determine drug responsiveness, its usefulness in resistance detection will require correlation with the clinical outcome among individuals infected with parasite strains showing different drug sensitivities.
Resumo:
The role of the therapeutic drug monitoring laboratory in support of immunosuppressant drug therapy is well established, and the introduction of sirolimus (SRL) is a new direction in this field. The lack of an immunoassay for several years has restricted the availability of SRL assay services. The recent availability of a CEDIA (R) SRL assay has the potential to improve this situation. The present communication has compared the CEDIA (R) SRL method with 2 established chromatographic methods, HPLC-UV and HPLC-MS/MS. The CEDIA (R) method, run on a Hitachi 917 analyzer, showed acceptable validation criteria with within-assay precision of 9.1% and 3.3%, and bias of 17.1% and 5.8%, at SRL concentrations of 5.0 mu g/L and 20 mu g/L, respectively. The corresponding between-run precision values were 11.5% and 3.3% and bias of 7.1% and 2.9% at 5.0 mu g/L and 20 mu g/L, respectively, The lower limit of quantification was found to be 3.0 mu g/L. A series of 96 EDTA whole-blood samples predominantly from renal transplant recipients were assayed by the 3 methods for comparison. It was found that the CEDIA (R) method showed a Deming regression line of CEDIA = 1.20 X HPLC-MS/MS - 0.07 (r = 0.934, SEE = 1.47), with a mean bias of 20.4%. Serial blood samples from 8 patients included in this evaluation showed that the CEDIA (R) method reflected the clinical fluctuations in the chromatographic methods, albeit with the variable bias noted. The CEDIA (R) method on the H917 analyzer is therefore a useful adjunct to SRL dosage individualization in renal transplant recipients.
Resumo:
The performances of the gelatin particle agglutination test (GPAT) and enzyme-linked immunosorbent assay (ELISA) for the diagnosis of strongyloidiasis with reference to the results of the agar plate culture technique (APCT) were evaluated with samples from 459 individuals from communities in northeast Thailand where strongyloidiasis is endemic. The prevalence of strongyloidiasis in five sample groups determined by GPAT varied between 29.3 and 61.5% (mean, 38.8%). ELISA and APCT, employed concurrently, gave lower prevalence rates of 27.5% (range, 21.6 to 42.1%) and 22.7% (range, 12.7 to 53.8%), respectively. By using APCT as the standard method, the sensitivity of GPAT was generally higher than that of ELISA (81 versus 73%). The specificity of GPAT was slightly lower than that of ELISA (74 versus 86%). The resulting GPAT titers exhibited positive linear relationships with the ELISA values (optical density at 490 nm) (P < 0.05), which suggests that the GPAT titer also reflects the levels of specific antibody comparable to those reflected by the ELISA values. Based on the relative ease and simplicity of use of the technique as well as the acceptable rates of sensitivity and specificity of the test, GPAT is more practical for screening for strongyloidiasis than the conventional ELISA.