992 resultados para Aluminium, particulate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sheets of precipitate hardenable 2024 aluminium have been processed by rolling at liquid nitrogen temperature in order to refine the microstructure. A number of different aging/heat treating procedures have been utilised that have resulted in significantly different mechanical properties. The cryo-rolled material was heat treated at 150 °C for varying times and the resulting mechanical properties evaluated as a function of this holding time. The resulting properties were found to be strongly influenced by precipitates that formed either during the aging step, rolling process or the subsequent heat treatment. The formability of the cryo-rolled and heat treated material has been investigated using a limiting dome height test (Erichsen cupping test).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have shown that cerium diphenyl phosphate (Cedpp) 3 is a very effective inhibitor of corrosion of aluminium alloys in chloride solutions. This paper describes the results of further studies using electrochemical and constant immersion corrosion tests to compare the effectiveness of Ce(dpp) 3 and Mischmetal diphenyl phosphate Mm(dpp) 3 as inhibitors of corrosion pitting on AA7075-T651 aluminium alloy. The results shows that both Ce(dpp) 3 and Mm(dpp) 3 are excellent inhibitors of pitting corrosion of this alloy in very aggressive environments of continuously aerated 0.1M and 1.0M sodium chloride (NaCl) solutions. Polarisation tests indicate that these compounds act as a cathodic inhibitors by reducing the rate of the oxygen reduction reaction, which results in a decreased corrosion current density and a separation of the corrosion potential from the pitting potential. This inhibition is thought to be due to the formation of a surface film consisting of rare earth metal oxide, aluminium oxide and a cerium-aluminium organo-phosphate complex. Surface analysis data from scanning electron microscopy and X-ray Energy Dispersive Spectroscopy show the complex nature of this protective film. This work further develops our understanding about the mechanisms through which these complex films form, and how inhibition occurs in the presence of these compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lubricant technology must keep pace with the ever increasing demands to reduce energy use and increase service intervals. Ionic liquids were evaluated as lubricants for aluminium in the neat state and as additives in base oils. The ionic liquids formed protective layers that reduced friction and wear

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrafine-grain aluminium sheet was produced by rolling at cryogenic (CR) and at room temperature (RTR). Commercial purity aluminium plate was reduced in 30 passes from an initial material thickness of 10 mm to a final thickness of 2 mm (80% reduction). Tensile stress and strength were significantly increased while total elongation was drastically reduced. It was found that despite the low tensile elongation both materials are able to accommodate high localised strains in the neck leading to a high reduction in area. The formability of the material was further investigated in bending operations. A minimum bending radius of 6 mm (CR) and 5 mm (RTR) was found and pure bending tests showed homogeneous forming behaviour for both materials. In V-die bending the cryo-rolled material showed strain localisations across the final radius and kinking of the sample. It has been found that even if the total elongation in tension is close to zero leading to early failure in V-die bending, ultra-fine grained and low ductile sheet metals can be roll formed to simple section shapes with small radii using commercial roll forming equipment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the study, the strengthening effect of aluminium foam in thin-walled aluminium tubes subject to bending load in investigated experimentally and numerically. Bending tests are conducted on foam filler, hollow tube and foam-filled tube. The finite element method is used as well to get deeper insight into the crush failure modes via focusing on the influence from wall thickness of the tube. The obtained information is useful to optimally design foam-filled tubes as energy absorbing devices in automotive engineering. The optimisation results can be implemented to find an optimum foam-filled tube that absorbs the same energy as the optimal hollow tube but with much less weight. © (2014) Trans Tech Publications, Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential of new designed continues ECAP machine in intermediate industrial scale has been discussed in the present work. The improved mechanical and microstructural properties of processed materials has been investigated on commercial aluminium alloy 6061 in T6 condition. The 6061-T6 sheet was subjected to one, two, three and four passes of ECAP. The results showing the significant improvement of mechanical properties after ECAP processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 Dr Huang was one of the first people to explore the possibility of reducing corrosion on aluminium alloys by electrochemical treatments in ionic liquids. Her study showed that the corrosion rates of aluminium alloys were indeed reduced after various electrochemical treatments in the target ionic liquids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whilst ionic liquids (IL) have been shown to inhibit corrosion on some reactive metals and alloys by forming a surface film, e.g. Li and Mg, understanding of the interaction between ionic liquids and aluminium is lacking. This research study investigated the viability of film formation on AA5083 Aluminium Alloy by electrochemical treatments in the trihexyl(tetradecyl)phosphonium diphenylphosphate ([P6,6,6,14][dpp]) IL. Two-step anodic treatments were performed on AA5083 in the IL, followed by a comparison of the corrosion behaviour of the IL-treated samples with that of a control. It has been revealed that the two-step IL-treatment led to reduced current densities on AA5083 under cyclic voltammetry scan in the IL before and after the IL-treatment. Lower corrosion rates have been shown on all samples treated in IL at room temperature. Surface characterisation showed a non-uniform porous film on the 50°C IL-treated sample with a film thickness ranging between 37nm and 155nm. The IL-film enhanced the corrosion resistance of AA5083 by protecting the Al-matrix and Fe-rich intermetallic particles (IMPs). Although findings of this study suggest similar IL-film formation as that on Li and Mg, more research needs to be conducted to optimise the electrochemical treatment conditions and ultimately to develop a robust IL-film formation procedure for corrosion protection.