848 resultados para Alkali earth metals


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The global energy scenario is currently a widely discussed topic, with growing concern about the future supplies. Thus, much attention has been dedicated to the utilization of biomass as an energy resource. In this respect, orange peel has become a material of great interest, especially to Brazil, which generates around 9.5 million tons of this waste per year. To this end, the authors studied the kinetics of the thermal processing of dried orange peel in inert and oxidizing atmosphere. The thermodynamic parameters were determined by the Ozawa-Flynn-Wall method for the global process observed during heating from the 25 degrees C up to 800 degrees C. The thermal analysis in air and nitrogen showed 3-2 stages of mass loss, respectively, with approximately 20% residual mass under a nitrogen atmosphere. The increase in the values of activation energy for the conversion points between 20% and 60% for thermal effects in air and nitrogen atmosphere was observed. The activation energy obtained in an oxidizing atmosphere was higher than that obtained under a nitrogen atmosphere. The fourier-transform infrared spectroscopy and X-ray diffraction analysis showed that the material has a high level of complexity with the presence of alkali and alkaline earth groups as well as phosphate, plus substances such as pectin, cellulose and lignin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tin dioxide (SnO2) thin films doped with Eu3+, are deposited by the sol-gel-dip-coating process on top of GaAs films, which is deposited by resistive evaporation on glass substrate. This heterojunction assembly presents luminescence from the rare-earth ion, unlike the SnO2 deposition directly on a glass substrate, where emissions from the Eu3+ transitions are absent. The Eu3+ transitions are clearly identified and are similar to the observation on SnO2 pressed powder (pellets), thermally treated at much higher temperatures. However, in the form of heterojunction films, the Eu emission comes along a broad band, located at higher energy compared to Eu3+ transitions, which is blue-shifted as the thermal annealing temperature increases. The size of nanocrystallites points toward quantum confinement or electron transfer between oxygen vacancies, originated from the disorder in the material, and trivalent rare-earth ions, which present acceptor-like character in this matrix. This electron transfer may relax for higher temperatures in the case of pellets, and the broad band is eliminated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)