958 resultados para Aligned corpora
Resumo:
A new technology called capillary forming enables transformation of vertically aligned nanoscale filaments into complex three-dimensional microarchitectures. We demonstrate capillary forming of carbon nanotubes into diverse forms having intricate bends, twists, and multidirectional textures. In addition to their novel geometries, these structures have mechanical stiffness exceeding that of microfabrication polymers, and can be used as masters for replica molding
Resumo:
We demonstrate the fabrication and integration of active microstructures based on composites of 3D carbon nanotube (CNT) frameworks and hydrogels. The alignment of the CNTs within the microstructures converts the isotropic expansion of the gel into a directed anisotropic motion. Actuation by a moisture-responsive gel is observed by changing the ambient humidity, and is predicted by a finite element model of the composite system. These shape changes are rapid and can be transduced electrically within a microfluidic channel, by measuring the resistance change across a CNT microstructure during expansion of the gel. Our results suggest that combinations of gels with aligned CNTs can be a platform for directing the actuation of gels and measuring their response to stimuli. © 2011 The Royal Society of Chemistry.
Resumo:
Deterministic organization of nanostructures into microscale geometries is essential for the development of materials with novel mechanical, optical, and surface properties. We demonstrate scalable fabrication of 3D corrugated carbon nanotube (CNT) microstructures, via an iterative sequence of vertically aligned CNT growth and capillary self-assembly. Vertical microbellows and tilted microcantilevers are created over large areas, and these structures can have thin walls with aspect ratios exceeding 100:1. We show these structures can be used as out-of-plane microsprings with compliance determined by the wall thickness and number of folds. © 2011 American Chemical Society.
Resumo:
We present a new approach for the fabrication and integration of vertically aligned forests of amorphous carbon nanowires (CNWs), using only standard lithography, oxygen plasma treatment, and thermal processing. The simplicity and scalability of this process, as well as the hierarchical organization of CNWs, provides a potential alternative to the use of carbon nanotubes and graphene for applications in microsystems and high surface area materials. The CNWs are highly branched at the nanoscale, and novel hierarchical microstructures with CNWs connected to a solid amorphous core are made by controlling the plasma treatment time. By multilayer processing we demonstrate deterministic joining of CNW micropillars into 3D sensing networks. Finally we show that these networks can be chemically functionalized and used for measurement of DNA binding with increased sensitivity. © 2011 American Chemical Society.
Resumo:
Scalable and cost effective patterning of polymer structures and their surface textures is essential to engineer material properties such as liquid wetting and dry adhesion, and to design artificial biological interfaces. Further, fabrication of high-aspect-ratio microstructures often requires controlled deep-etching methods or high-intensity exposure. We demonstrate that carbon nanotube (CNT) composites can be used as master molds for fabrication of high-aspect-ratio polymer microstructures having anisotropic nanoscale textures. The master molds are made by growth of vertically aligned CNT patterns, capillary densification of the CNTs using organic solvents, and capillary-driven infiltration of the CNT structures with SU-8. The composite master structures are then replicated in SU-8 using standard PDMS transfer molding methods. By this process, we fabricated a library of replicas including vertical micro-pillars, honeycomb lattices with sub-micron wall thickness and aspect ratios exceeding 50:1, and microwells with sloped sidewalls. This process enables batch manufacturing of polymer features that capture complex nanoscale shapes and textures, while requiring only optical lithography and conventional thermal processing. © 2011 The Royal Society of Chemistry.
Resumo:
Vertically aligned carbon nanotube (CNT) 'forest' microstructures fabricated by chemical vapor deposition (CVD) using patterned catalyst films typically have a low CNT density per unit area. As a result, CNT forests have poor bulk properties and are too fragile for integration with microfabrication processing. We introduce a new self-directed capillary densification method where a liquid is controllably condensed onto and evaporated from the CNT forests. Compared to prior approaches, where the substrate with CNTs is immersed in a liquid, our condensation approach gives significantly more uniform structures and enables precise control of the CNT packing density. We present a set of design rules and parametric studies of CNT micropillar densification by self-directed capillary action, and show that self-directed capillary densification enhances Young's modulus and electrical conductivity of CNT micropillars by more than three orders of magnitude. Owing to the outstanding properties of CNTs, this scalable process will be useful for the integration of CNTs as a functional material in microfabricated devices for mechanical, electrical, thermal and biomedical applications. © 2011 IOP Publishing Ltd.
Resumo:
We report a mechanism by which nanoscale filaments self-assemble into asymmetric aggregates by elastocapillary action. Specifically, capillary rise of liquid into an asymmetric pattern of vertically aligned filaments causes the filaments to deflect laterally during elastocapillary densification. We quantitatively show that the lateral deflection can be controlled precisely by the pattern shape and the coupling strength among the filaments. We exploit this mechanism to fabricate asymmetric micropillars and multidirectional bridges of densely packed carbon nanotubes. Analogous behavior occurs as biological filaments interact with liquids, and these findings enable scalable fabrication of anisotropic filament assemblies for manipulating surface interactions between solids and liquids. © 2010 The American Physical Society.
Resumo:
It is well-known that carbon nanotube (CNT) growth from a dense arrangement of catalyst nanoparticles creates a vertically aligned CNT forest. CNT forests offer attractive anisotropic mechanical, thermal, and electrical properties, and their anisotropic structure is enabled by the self-organization of a large number of CNTs. This process is governed by individual CNT diameter, spacing, and the CNT-to-CNT interaction. However, little information is known about the self-organization of CNTs within a forest. Insight into the self-organization is, however, essential for tailoring the properties of the CNT forests for applications such as electrical interconnects, thermal interfaces, dry adhesives and energy storage. We demonstrate that arrays of CNT micropillars having micron-scale diameters organize in a similar manner as individual CNTs within a forest. For example, as previously demonstrated for individual CNTs within a forest, entanglement of small-diameter CNT micropillars during the initial stage of growth creates a film of entwined pillars. This layer enables coordinated subsequent growth of the pillars in the vertical direction, in a case where isolated pillars would not grow in a self-supporting fashion. Finally, we provide a detailed overview of the self-organization as a function of the diameter, length and spacing of the CNT pillars. This study, which is applicable to many one-dimensional nanostructured films, demonstrates guidelines for tailoring the self-organization which can enable control of the collective mechanical, electrical and interfacial properties of the films. © 2009 Elsevier B.V. All rights reserved.
Resumo:
We report straight and vertically aligned defect-free GaAs nanowires grown on Si(111) substrates by metal-organic chemical vapor deposition. By deposition of thin GaAs buffer layers on Si substrates, these nanowires could be grown on the buffer layers with much less stringent conditions as otherwise imposed by epitaxy of III-V compounds on Si. Also, crystal-defect-free GaAs nanowires were grown by using either a two-temperature growth mode consisting of a short initial nucleation step under higher temperature followed by subsequent growth under lower temperature or a rapid growth rate mode with high source flow rate. These two growth modes not only eliminated planar crystallographic defects but also significantly reduced tapering. Core-shell GaAs-AlGaAs nanowires grown by the two-temperature growth mode showed improved optical properties with strong photoluminescence and long carrier life times. © 2011 American Chemical Society.
Resumo:
Straight, vertically aligned GaAs nanowires were grown on Si(111) substrates coated with thin GaAs buffer layers. We find that the V/III precursor ratio and growth temperature are crucial factors influencing the morphology and quality of buffer layers. A double layer structure, consisting of a thin initial layer grown at low V/III ratio and low temperature followed by a layer grown at high V/III ratio and high temperature, is crucial for achieving straight, vertically aligned GaAs nanowires on Si(111) substrates. An in situ annealing step at high temperature after buffer layer growth improves the surface and structural properties of the buffer layer, which further improves the morphology of the GaAs nanowire growth. Through such optimizations we show that vertically aligned GaAs nanowires can be fabricated on Si(111) substrates and achieve the same structural and optical properties as GaAs nanowires grown directly on GaAs(111)B substrates.
Resumo:
We demonstrate vertically aligned epitaxial GaAs nanowires of excellent crystallographic quality and optimal shape, grown by Au nanoparticle-catalyzed metalorganic chemical vapor deposition. This is achieved by a two-temperature growth procedure, consisting of a brief initial high-temperature growth step followed by prolonged growth at a lower temperature. The initial high-temperature step is essential for obtaining straight, vertically aligned epitaxial nanowires on the (111)B GaAs substrate. The lower temperature employed for subsequent growth imparts superior nanowire morphology and crystallographic quality by minimizing radial growth and eliminating twinning defects. Photoluminescence measurements confirm the excellent optical quality of these two-temperature grown nanowires. Two mechanisms are proposed to explain the success of this two-temperature growth process, one involving Au nanoparticle-GaAs interface conditions and the other involving melting-solidification temperature hysteresis of the Au-Ga nanoparticle alloy.
Resumo:
Nonequilibrium spin distributions in single GaAs/AlGaAs core-shell nanowires are excited using resonant polarized excitation at 10 K. At all excitation energies, we observe strong photoluminescence polarization due to suppressed radiative recombination of excitons with dipoles aligned perpendicular to the nanowire. Excitation resonances are observed at 1- or 2-LO phonon energies above the exciton ground states. Using rate equation modeling, we show that, at the lowest energies, strongly nonequilibrium spin distributions are present and we estimate their spin relaxation rate.
Resumo:
We investigate how to tailor the structural, crystallographic and optical properties of GaAs nanowires. Nanowires were grown by Au nanoparticle-catalyzed metalorganic chemical vapor deposition. A high arsine flow rate, that is, a high ratio of group V to group III precursors, imparts significant advantages. It dramatically reduces planar crystallographic defects and reduces intrinsic carbon dopant incorporation. Increasing V/III ratio further, however, instigates nanowire kinking and increases nanowire tapering. By choosing an intermediate V/III ratio we achieve uniform, vertically aligned GaAs nanowires, free of planar crystallographic defects, with excellent optical properties and high purity. These findings will greatly assist the development of future GaAs nanowire-based electronic and optoelectronic devices, and are expected to be more broadly relevant to the rational synthesis of other III-V nanowires. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA.
Resumo:
New materials are needed to replace degenerated intervertebral disc tissue and to provide longer-term solutions for chronic back-pain. Replacement tissue potentially could be engineered by seeding cells into a scaffold that mimics the architecture of natural tissue. Many natural tissues, including the nucleus pulposus (the central region of the intervertebral disc) consist of collagen nanofibers embedded in a gel-like matrix. Recently it was shown that electrospun micro- or nano-fiber structures of considerable thickness can be produced by collecting fibers in an ethanol bath. Here, randomly aligned polycaprolactone electrospun fiber structures up to 50 mm thick are backfilled with alginate hydrogels to form novel composite materials that mimic the fiber-reinforced structure of the nucleus pulposus. The composites are characterized using both indentation and tensile testing. The composites are mechanically robust, exhibiting substantial strain-to-failure. The method presented here provides a way to create large biomimetic scaffolds that more closely mimic the composite structure of natural tissue. © 2012 Materials Research Society.
Resumo:
A photodiode consisting of nanopillars of thin-film silicon p-i-n on an array of vertically aligned carbon nanotubes (CNTs) with a noncontinuous cathode electrode is demonstrated. The structure exploits the intrinsic enhancement of the CNTs' electric field, which leads to reduction in the photodiode's operating voltage and response time and enhancement of optical coupling due to better light trapping, as compared with the conventional planar photodiode. These improvements translate to higher resolution and higher frame rate flat-panel imaging systems for a broad range of applications, including computed tomography and particle detection.