884 resultados para Airway segmentation
Resumo:
Le site Gaudreau est un site perturbé et à occupations multiples situé dans le sud-est du Québec, et présente des occupations datant du Paléoindien Récent jusqu’à la période historique. Les occupations Archaïques du site, noté par la présence de bifaces diagnostiques de l’Archaïque Supérieur et de l’Archaïque Terminal et par des Macrooutils de l’Archaïque Moyen et de l’Archaïque Supérieur, sont le sujet principal de ce mémoire. Puisqu’aucune occupation ne peut être différencié horizontalement ni verticalement, et qu’aucun objet non-diagnostique ne peut être associé avec certitude, seul un échantillon de 32 objets ont été observés. Étant donné la faible taille de l’échantillon analysé, il est fort probable qu’un plus grand nombre de sources de matières premières aient été utilisés durant les occupations de l’Archaïque. Toutefois, un réseau de matières premières lithiques similaire à ceux des sites du Lac Mégantic a été observé, avec une forte représentation de la rhyolite Kineo-Traveller et des cherts Appalachiens. Des cherts des Grands Lacs et le quartzite de Cheshire sont aussi présents. Le mudstone silicifié d’origine locale et le quartz sont par contre faiblement représentés dans l’échantillon, probablement dû à un biais de proximité de source. L’analyse technique de l’échantillon, sans contrôle pour les pratiques techno-économiques, dénote plusieurs récurrences techniques à l’intérieur des unités typologiques, sans toutefois appuyer des différences récurrentes significatives entre les matières premières de régions différentes. À cause de la taille de l’échantillon et du contexte perturbé, la pertinence des fortes similarités entre certains objets est douteuse. La segmentation interpersonnelle des chaînes opératoires ne pouvait être déterminée dans l’échantillon. Cependant, les résultats incitent plutôt à croire que les matières premières devaient circuler sous diverses formes. Il peut être considéré que, en dehors des matières premières locales, les occupants Archaïques du site Gaudreau n’avaient pas d’accès direct aux matières premières exogènes.
Resumo:
L’échocardiographie et l’imagerie par résonance magnétique sont toutes deux des techniques non invasives utilisées en clinique afin de diagnostiquer ou faire le suivi de maladies cardiaques. La première mesure un délai entre l’émission et la réception d’ultrasons traversant le corps, tandis que l’autre mesure un signal électromagnétique généré par des protons d’hydrogène présents dans le corps humain. Les résultats des acquisitions de ces deux modalités d’imagerie sont fondamentalement différents, mais contiennent dans les deux cas de l’information sur les structures du coeur humain. La segmentation du ventricule gauche consiste à délimiter les parois internes du muscle cardiaque, le myocarde, afin d’en calculer différentes métriques cliniques utiles au diagnostic et au suivi de différentes maladies cardiaques, telle la quantité de sang qui circule à chaque battement de coeur. Suite à un infarctus ou autre condition, les performances ainsi que la forme du coeur en sont affectées. L’imagerie du ventricule gauche est utilisée afin d’aider les cardiologues à poser les bons diagnostics. Cependant, dessiner les tracés manuels du ventricule gauche requiert un temps non négligeable aux cardiologues experts, d’où l’intérêt pour une méthode de segmentation automatisée fiable et rapide. Ce mémoire porte sur la segmentation du ventricule gauche. La plupart des méthodes existantes sont spécifiques à une seule modalité d’imagerie. Celle proposée dans ce document permet de traiter rapidement des acquisitions provenant de deux modalités avec une précision de segmentation équivalente au tracé manuel d’un expert. Pour y parvenir, elle opère dans un espace anatomique, induisant ainsi une forme a priori implicite. L’algorithme de Graph Cut, combiné avec des stratégies telles les cartes probabilistes et les enveloppes convexes régionales, parvient à générer des résultats qui équivalent (ou qui, pour la majorité des cas, surpassent) l’état de l’art ii Sommaire au moment de la rédaction de ce mémoire. La performance de la méthode proposée, quant à l’état de l’art, a été démontrée lors d’un concours international. Elle est également validée exhaustivement via trois bases de données complètes en se comparant aux tracés manuels de deux experts et des tracés automatisés du logiciel Syngovia. Cette recherche est un projet collaboratif avec l’Université de Bourgogne, en France.
Resumo:
Monitoring agricultural crops constitutes a vital task for the general understanding of land use spatio-temporal dynamics. This paper presents an approach for the enhancement of current crop monitoring capabilities on a regional scale, in order to allow for the analysis of environmental and socio-economic drivers and impacts of agricultural land use. This work discusses the advantages and current limitations of using 250m VI data from the Moderate Resolution Imaging Spectroradiometer (MODIS) for this purpose, with emphasis in the difficulty of correctly analyzing pixels whose temporal responses are disturbed due to certain sources of interference such as mixed or heterogeneous land cover. It is shown that the influence of noisy or disturbed pixels can be minimized, and a much more consistent and useful result can be attained, if individual agricultural fields are identified and each field's pixels are analyzed in a collective manner. As such, a method is proposed that makes use of image segmentation techniques based on MODIS temporal information in order to identify portions of the study area that agree with actual agricultural field borders. The pixels of each portion or segment are then analyzed individually in order to estimate the reliability of the temporal signal observed and the consequent relevance of any estimation of land use from that data. The proposed method was applied in the state of Mato Grosso, in mid-western Brazil, where extensive ground truth data was available. Experiments were carried out using several supervised classification algorithms as well as different subsets of land cover classes, in order to test the methodology in a comprehensive way. Results show that the proposed method is capable of consistently improving classification results not only in terms of overall accuracy but also qualitatively by allowing a better understanding of the land use patterns detected. It thus provides a practical and straightforward procedure for enhancing crop-mapping capabilities using temporal series of moderate resolution remote sensing data.
Resumo:
This paper presents a new method of eye localisation and face segmentation for use in a face recognition system. By using two near infrared light sources, we have shown that the face can be coarsely segmented, and the eyes can be accurately located, increasing the accuracy of the face localisation and improving the overall speed of the system. The system is able to locate both eyes within 25% of the eye-to-eye distance in over 96% of test cases.
Resumo:
Person tracking systems are dependent on being able to locate a person accurately across a series of frames. Optical flow can be used to segment a moving object from a scene, provided the expected velocity of the moving object is known; but successful detection also relies on being able segment the background. A problem with existing optical flow techniques is that they don’t discriminate the foreground from the background, and so often detect motion (and thus the object) in the background. To overcome this problem, we propose a new optical flow technique, that is based upon an adaptive background segmentation technique, which only determines optical flow in regions of motion. This technique has been developed with a view to being used in surveillance systems, and our testing shows that for this application it is more effective than other standard optical flow techniques.
Resumo:
Purpose Waiting for service by customers is an important problem for many financial service marketers. Two new approaches are proposed. First, customer evaluation of the service is increased with an ambient scent. Second a cognitive variable is identified which different iates customers by the way they value time so that they can be segmented. Methodology Pretests included focus groups which highlighted financial services and a pilot test were foll owed by a main sample of 607 subjects. Structural equation modelling and multivariate analysis of covariance were used for analysis. Findings A cognitive variable, the need for time management can be used, together with demographic and customer net worth data, to segment a customer base. Two environmental interventions, music and scent, can increase customer satisfaction among customers kept waiting in a line. Research implications Two original approaches to a rapidly growing service marketing problem are identified. Practical implications Service contact points can reduce incidence of "queue rage" and enhance customer satisfaction by either or both of two simple modifications to the service environment or a preventive strategy of offering targeted customers an alternative. Originality A new method of segmentation and a new environmental intervention are proposed .
Resumo:
The over represented number of novice drivers involved in crashes is alarming. Driver training is one of the interventions aimed at mitigating the number of crashes that involve young drivers. To our knowledge, Advanced Driver Assistance Systems (ADAS) have never been comprehensively used in designing an intelligent driver training system. Currently, there is a need to develop and evaluate ADAS that could assess driving competencies. The aim is to develop an unsupervised system called Intelligent Driver Training System (IDTS) that analyzes crash risks in a given driving situation. In order to design a comprehensive IDTS, data is collected from the Driver, Vehicle and Environment (DVE), synchronized and analyzed. The first implementation phase of this intelligent driver training system deals with synchronizing multiple variables acquired from DVE. RTMaps is used to collect and synchronize data like GPS, vehicle dynamics and driver head movement. After the data synchronization, maneuvers are segmented out as right turn, left turn and overtake. Each maneuver is composed of several individual tasks that are necessary to be performed in a sequential manner. This paper focuses on turn maneuvers. Some of the tasks required in the analysis of ‘turn’ maneuver are: detect the start and end of the turn, detect the indicator status change, check if the indicator was turned on within a safe distance and check the lane keeping during the turn maneuver. This paper proposes a fusion and analysis of heterogeneous data, mainly involved in driving, to determine the risk factor of particular maneuvers within the drive. It also explains the segmentation and risk analysis of the turn maneuver in a drive.
Resumo:
Past studies of software maintenance issues have largely concentrated on the average North American firm. While they have made a substantial contribution to good information system management practice, it is believed that further segmentation of sample data and cross-country comparisons will help to identify patterns of behaviour more akin to many less average organizations in North America and elsewhere. This paper compares the Singapore maintenance scene with the reported North American experience. Comparisons are also made between: Government organizations, Singapore corporations and multinational corporations (MNCs); mainframe and minicomputer installations; and fourth-generation language (4GL) and non-4GL computer installations. Study findings, while in many cases were similar to earlier US studies, do show the importance of Singapore's young application portfolio, the widespread usage of 4GLs and the severe maintenance personnel problems.
Resumo:
In public venues, crowd size is a key indicator of crowd safety and stability. Crowding levels can be detected using holistic image features, however this requires a large amount of training data to capture the wide variations in crowd distribution. If a crowd counting algorithm is to be deployed across a large number of cameras, such a large and burdensome training requirement is far from ideal. In this paper we propose an approach that uses local features to count the number of people in each foreground blob segment, so that the total crowd estimate is the sum of the group sizes. This results in an approach that is scalable to crowd volumes not seen in the training data, and can be trained on a very small data set. As a local approach is used, the proposed algorithm can easily be used to estimate crowd density throughout different regions of the scene and be used in a multi-camera environment. A unique localised approach to ground truth annotation reduces the required training data is also presented, as a localised approach to crowd counting has different training requirements to a holistic one. Testing on a large pedestrian database compares the proposed technique to existing holistic techniques and demonstrates improved accuracy, and superior performance when test conditions are unseen in the training set, or a minimal training set is used.
Resumo:
The application of object-based approaches to the problem of extracting vegetation information from images requires accurate delineation of individual tree crowns. This paper presents an automated method for individual tree crown detection and delineation by applying a simplified PCNN model in spectral feature space followed by post-processing using morphological reconstruction. The algorithm was tested on high resolution multi-spectral aerial images and the results are compared with two existing image segmentation algorithms. The results demonstrate that our algorithm outperforms the other two solutions with the average accuracy of 81.8%.
Resumo:
This thesis investigates the problem of robot navigation using only landmark bearings. The proposed system allows a robot to move to a ground target location specified by the sensor values observed at this ground target posi- tion. The control actions are computed based on the difference between the current landmark bearings and the target landmark bearings. No Cartesian coordinates with respect to the ground are computed by the control system. The robot navigates using solely information from the bearing sensor space. Most existing robot navigation systems require a ground frame (2D Cartesian coordinate system) in order to navigate from a ground point A to a ground point B. The commonly used sensors such as laser range scanner, sonar, infrared, and vision do not directly provide the 2D ground coordi- nates of the robot. The existing systems use the sensor measurements to localise the robot with respect to a map, a set of 2D coordinates of the objects of interest. It is more natural to navigate between the points in the sensor space corresponding to A and B without requiring the Cartesian map and the localisation process. Research on animals has revealed how insects are able to exploit very limited computational and memory resources to successfully navigate to a desired destination without computing Cartesian positions. For example, a honeybee balances the left and right optical flows to navigate in a nar- row corridor. Unlike many other ants, Cataglyphis bicolor does not secrete pheromone trails in order to find its way home but instead uses the sun as a compass to keep track of its home direction vector. The home vector can be inaccurate, so the ant also uses landmark recognition. More precisely, it takes snapshots and compass headings of some landmarks. To return home, the ant tries to line up the landmarks exactly as they were before it started wandering. This thesis introduces a navigation method based on reflex actions in sensor space. The sensor vector is made of the bearings of some landmarks, and the reflex action is a gradient descent with respect to the distance in sensor space between the current sensor vector and the target sensor vec- tor. Our theoretical analysis shows that except for some fully characterized pathological cases, any point is reachable from any other point by reflex action in the bearing sensor space provided the environment contains three landmarks and is free of obstacles. The trajectories of a robot using reflex navigation, like other image- based visual control strategies, do not correspond necessarily to the shortest paths on the ground, because the sensor error is minimized, not the moving distance on the ground. However, we show that the use of a sequence of waypoints in sensor space can address this problem. In order to identify relevant waypoints, we train a Self Organising Map (SOM) from a set of observations uniformly distributed with respect to the ground. This SOM provides a sense of location to the robot, and allows a form of path planning in sensor space. The navigation proposed system is analysed theoretically, and evaluated both in simulation and with experiments on a real robot.
Resumo:
Surveillance networks are typically monitored by a few people, viewing several monitors displaying the camera feeds. It is then very difficult for a human operator to effectively detect events as they happen. Recently, computer vision research has begun to address ways to automatically process some of this data, to assist human operators. Object tracking, event recognition, crowd analysis and human identification at a distance are being pursued as a means to aid human operators and improve the security of areas such as transport hubs. The task of object tracking is key to the effective use of more advanced technologies. To recognize an event people and objects must be tracked. Tracking also enhances the performance of tasks such as crowd analysis or human identification. Before an object can be tracked, it must be detected. Motion segmentation techniques, widely employed in tracking systems, produce a binary image in which objects can be located. However, these techniques are prone to errors caused by shadows and lighting changes. Detection routines often fail, either due to erroneous motion caused by noise and lighting effects, or due to the detection routines being unable to split occluded regions into their component objects. Particle filters can be used as a self contained tracking system, and make it unnecessary for the task of detection to be carried out separately except for an initial (often manual) detection to initialise the filter. Particle filters use one or more extracted features to evaluate the likelihood of an object existing at a given point each frame. Such systems however do not easily allow for multiple objects to be tracked robustly, and do not explicitly maintain the identity of tracked objects. This dissertation investigates improvements to the performance of object tracking algorithms through improved motion segmentation and the use of a particle filter. A novel hybrid motion segmentation / optical flow algorithm, capable of simultaneously extracting multiple layers of foreground and optical flow in surveillance video frames is proposed. The algorithm is shown to perform well in the presence of adverse lighting conditions, and the optical flow is capable of extracting a moving object. The proposed algorithm is integrated within a tracking system and evaluated using the ETISEO (Evaluation du Traitement et de lInterpretation de Sequences vidEO - Evaluation for video understanding) database, and significant improvement in detection and tracking performance is demonstrated when compared to a baseline system. A Scalable Condensation Filter (SCF), a particle filter designed to work within an existing tracking system, is also developed. The creation and deletion of modes and maintenance of identity is handled by the underlying tracking system; and the tracking system is able to benefit from the improved performance in uncertain conditions arising from occlusion and noise provided by a particle filter. The system is evaluated using the ETISEO database. The dissertation then investigates fusion schemes for multi-spectral tracking systems. Four fusion schemes for combining a thermal and visual colour modality are evaluated using the OTCBVS (Object Tracking and Classification in and Beyond the Visible Spectrum) database. It is shown that a middle fusion scheme yields the best results and demonstrates a significant improvement in performance when compared to a system using either mode individually. Findings from the thesis contribute to improve the performance of semi-automated video processing and therefore improve security in areas under surveillance.
Resumo:
With the increasing resolution of remote sensing images, road network can be displayed as continuous and homogeneity regions with a certain width rather than traditional thin lines. Therefore, road network extraction from large scale images refers to reliable road surface detection instead of road line extraction. In this paper, a novel automatic road network detection approach based on the combination of homogram segmentation and mathematical morphology is proposed, which includes three main steps: (i) the image is classified based on homogram segmentation to roughly identify the road network regions; (ii) the morphological opening and closing is employed to fill tiny holes and filter out small road branches; and (iii) the extracted road surface is further thinned by a thinning approach, pruned by a proposed method and finally simplified with Douglas-Peucker algorithm. Lastly, the results from some QuickBird images and aerial photos demonstrate the correctness and efficiency of the proposed process.
Resumo:
Abandoned object detection (AOD) systems are required to run in high traffic situations, with high levels of occlusion. Systems rely on background segmentation techniques to locate abandoned objects, by detecting areas of motion that have stopped. This is often achieved by using a medium term motion detection routine to detect long term changes in the background. When AOD systems are integrated into person tracking system, this often results in two separate motion detectors being used to handle the different requirements. We propose a motion detection system that is capable of detecting medium term motion as well as regular motion. Multiple layers of medium term (static) motion can be detected and segmented. We demonstrate the performance of this motion detection system and as part of an abandoned object detection system.