977 resultados para Air content


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using spcctroscopic ellipsometry (SE), we have measured the optical properties and optical gaps of a series of amorphous carbon (a-C) films ∼ 100-300 Å thick, prepared using a filtered beam of C+ ions from a cathodic arc. Such films exhibit a wide range of sp3-bonded carbon contents from 20 to 76 at.%, as measured by electron energy loss spectroscopy (EELS). The Taue optical gaps of the a-C films increase monotonically from 0.65 eV for 20 at.% sp3 C to 2.25 eV for 76 at.% sp3 C. Spectra in the ellipsometric angles (1.5-5 eV) have been analyzed using different effective medium theories (EMTs) applying a simplified optical model for the dielectric function of a-C, assuming a composite material with sp2 C and sp3 C components. The most widely used EMT, namely that of Bruggeman (with three-dimensionally isotropic screening), yields atomic fractions of sp3 C that correlate monotonically with those obtained from EELS. The results of the SE analysis, however, range from 10 to 25 at.% higher than those from EELS. In fact, we have found that the volume percent sp3 C from SE using the Bruggeman EMT shows good numerical agreement with the atomic percent sp3 C from EELS. The SE-EELS discrepancy has been reduced by using an optical model in which the dielectric function of the a-C is determined as a volume-fraction-weighted average of the dielectric functions of the sp2 C and sp3 C components. © 1998 Elsevier Science S.A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optimization of off-null ellipsometry is described with emphasis on the improvement of sample thickness sensitivity. Optimal conditions are dependent on azimuth angle settings of the polarizer, compensator, and analyzer in a polarizer-compensator-sample-analyzer ellipsometer arrangement. Numerical simulation utilized offers an approach to present the dependence of the sensitivity on the azimuth angle settings, from which optimal settings corresponding to the best sensitivity are derived. For a series of samples of SiO2 layer (thickness in the range of 1.8-6.5 nm) on silicon substrate, the theory analysis proves that sensitivity at the optimal settings is increased 20 times compared to that at null settings used in most works, and the relationship between intensity and thickness is simplified as a linear type instead of the original nonlinear type, with the relative error reduced to similar to 1/100 at the optimal settings. Furthermore the discussion has been extended toward other factors affecting the sensitivity of the practical system, such as the linear dynamic range of the detector, the signal-to-noise ratio and the intensity from the light source, etc. Experimental results from the investigation Of SiO2 layer on silicon substrate are chosen to verify the optimization. (c) 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-assembling process near the three-phase contact line of air, water and vertical substrate is widely used to produce various kinds of nanostructured materials and devices. We perform an in-situ observation on the self-assembling process in the vicinity of the three phase contact line. Three kinds of aggregations, i.e. particle-particle aggregation, particle-chain aggregation and chain-chain aggregation, in the initial stage of vertical deposition process are revealed by our experiments. It is found that the particle particle aggregation and the particle-chain aggregation can be qualitatively explained by the theory of the capillary immersion force and mirror image force, while the chain-chain aggregation leaves an opening question for the further studies. The present study may provide more deep insight into the self-assembling process of colloidal particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When materials processing is conducted in air surroundings by use of an impinging plasma jet, the ambient air will be entrained into the materials processing region, resulting in unfavorable oxidation of the feedstock metal particles injected into the plasma jet and of metallic substrate material. Using a cylindrical solid shield may avoid the air entrainment if the shield length is suitably selected and this approach has the merit that expensive vacuum chamber and its pumping system are not needed. Modeling study is thus conducted to reveal how the length of the cylindrical solid shield affects the ambient air entrainment when materials processing (spraying, remelting, hardening, etc.) is conducted by use of a turbulent or laminar argon plasma jet impinging normally upon a flat substrate in atmospheric air. It is shown that the mass flow rate of the ambient air entrained into the impinging plasma jet cannot be appreciably reduced unless the cylindrical shield is long enough. In order to completely avoid the air entrainment, the gap between the downstream-end section of the cylindrical solid shield and the substrate surface must be carefully selected, and the suitable size of the gap for the turbulent plasma jet is appreciably larger than that for the laminar one. The overheating of the solid shield or the substrate could become a problem for the turbulent case, and thus additional cooling measure may be needed when the entrainment of ambient air into the turbulent impinging plasma jet is to be completely avoided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dependence of microstructure and thermal stability on Fe content of bulk Nd60Al10Ni10Cu20-xFex (0 less than or equal to x less than or equal to 20) metallic glasses is investigated by means of differential scanning calorimetry (DSC), X-ray diffraction (XRD) and high-resolution transmission electron micrograph (HRTEM). All samples exhibit typical amorphous feature under the detect limit of XRD, however, HRTEM results show that the microstructure of Nd60Al10Ni10Cu20-xFex alloys changes from a homogeneous amorphous phase to a composite structure consisting of clusters dispersed in amorphous matrix by increasing Fe content. Dynamic mechanical properties of these alloys with controllable microstructure are studied, expressed via storage modulus, the loss modulus and the mechanical damping. The results reveal that the storage modulus of the alloy without Fe added shows a distinct decrease due to the main a relaxation. This decrease weakens and begins at a higher temperature with increasing Fe content. The mechanism of the effect of Fe addition on the microstructure and thermal stability in this system is discussed in terms of thermodynamics viewpoints. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work. co-current flow characteristics of air/non-Newtonian liquid systems in inclined smooth pipes are studied experimentally and theoretically using transparent tubes of 20, 40 and 60 turn in diameter. Each tube includes two 10 m lone pipe branches connected by a U-bend that is capable of being inclined to any angle, from a completely horizontal to a fully vertical position. The flow rate of each phase is varied over a wide range. The studied flow phenomena are bubbly, plug flow, slug flow, churn flow and annular flow. These are observed and recorded by a high flow. stratified flow. -speed camera over a wide range of operating conditions. The effects of the liquid phase properties, the inclination angle and the pipe diameter on two-phase flow characteristics are systematically studied. The Heywood-Charles model for horizontal flow was modified to accommodate stratified flow in inclined pipes, taking into account the average void fraction and pressure drop of the mixture flow of a gas/non-Newtonian liquid. The pressure drop gradient model of Taitel and Barnea for a gas/Newtonian liquid slug flow was extended to include liquids possessing shear-thinning flow behaviour in inclined pipes. The comparison of the predicted values with the experimental data shows that the models presented here provide a reasonable estimate of the average void fraction and the corresponding pressure drop for the mixture flow of a gas/ non-Newtonian liquid. (C) 2007 Elsevier Ltd. All rights reserved.