967 resultados para Age, 14C calibrated, CalPal online (Danzeglocke et al. 2012)
Resumo:
Smart et al. (2014) suggested that the detection of nitrate spikes in polar ice cores from solar energetic particle (SEP) events could be achieved if an analytical system with sufficiently high resolution was used. Here we show that the spikes they associate with SEP events are not reliably recorded in cores from the same location, even when the resolution is clearly adequate. We explain the processes that limit the effective resolution of ice cores. Liquid conductivity data suggest that the observed spikes are associated with sodium or another nonacidic cation, making it likely that they result from deposition of sea salt or similar aerosol that has scavenged nitrate, rather than from a primary input of nitrate in the troposphere. We consider that there is no evidence at present to support the identification of any spikes in nitrate as representing SEP events. Although such events undoubtedly create nitrate in the atmosphere, we see no plausible route to using nitrate spikes to document the statistics of such events.
Resumo:
Fil: Chicote, Gloria. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación. Instituto de Investigaciones en Humanidades y Ciencias Sociales (UNLP-CONICET); Argentina.
Resumo:
A composite record (LO09-14) of three sediment cores from the subpolar North Atlantic (Reykjanes Ridge) was investigated in order to assess surface ocean variability during the last 11 kyr. The core site is today partly under the influence of the Irminger Current (IC), a branch of the North Atlantic Drift continuing northwestward around Iceland. However, it is also proximal to the Sub-Arctic Front (SAF) that may cause extra dynamic hydrographic conditions. We used statistical methods applied to the fossil assemblages of diatoms to reconstruct quantitative sea surface temperatures (SSTs). Our investigations give evidence for different regional signatures of Holocene surface oceanographic changes in the North Atlantic. Core LO09-14 reveal relatively low and highly variable SSTs during the early Holocene, indicating a weak IC and increased advection of subpolar water over the site. A mid-Holocene thermal optimum with a strong IC occurs from 7.5 to 5 kyr and is followed by cooler and more stable late Holocene surface conditions. Several intervals throughout the Holocene are dominated by the diatom species Rhizosolenia borealis, which we suggest indicates proximity to a strongly defined convergence front, most likely the SAF. Several coolings, reflecting southeastward advection of cold and ice-bearing waters, occur at 10.4, 9.8, 8.3, 7.9, 6.4, 4.7, 4.3 and 2.8 kyr. The cooling events recorded in the LO09-14 SSTs correlate well with both other surface records from the area and the NADW reductions observed at ODP Site 980 indicating a surface-deepwater linkage through the Holocene.
Resumo:
Sortable silt mean grain sizes together with oxygen and carbon isotopic data produced on the benthic foraminiferal species Fontbotia wuellerstorfi are used to construct high-resolution records of near-bottom flow vigour and deep water ventilation at a core site MD02-2589 located at 2660 m water depth on the southern Agulhas Plateau. The results suggest that during glacial periods (marine oxygen isotope stages 2 and 6, MIS 2 and MIS 6, respectively), there was a persistent contribution of a well-ventilated water mass within the Atlantic to Indian oceanic gateway with a d13C signature similar to present-day Northern Component Water (NCW), e.g., North Atlantic Deep Water (NADW). The records of chemical ventilation and near-bottom flow vigor reflect changes in the advection of northern source waters and meridional variability in the location of the Antarctic Circumpolar Current and its associated fronts. We suggest that during Termination II (TII), changes in chemical ventilation are largely decoupled from near-bottom physical flow speeds. A mid-TII climate optimum is associated with a low-flow speed plateau concurrent with a period of increased ventilation shown in the benthic d13C of other Southern Ocean records but not in our benthic d13C of MD02-2589. The climate optimum is followed by a period of southern cooling around 128 ka coincident with a stronger influence of NCW to interglacial levels at around 124 ka. All proxy records show a near synchronous and rapid shift during the transition from MIS 5a-4 (73 ka). This large event is attributed to a rapid decrease in NADW influence and replacement over the Agulhas Plateau by southern source waters.