970 resultados para African American labor union members
Resumo:
This study focuses on the mechanisms underlying water and heat transfer in upper soil layers, and their effects on soil physical prognostic variables and the individual components of the energy balance. The skill of the JULES (Joint UK Land Environment Simulator) land surface model (LSM) to simulate key soil variables, such as soil moisture content and surface temperature, and fluxes such as evaporation, is investigated. The Richards equation for soil water transfer, as used in most LSMs, was updated by incorporating isothermal and thermal water vapour transfer. The model was tested for three sites representative of semi-arid and temperate arid climates: the Jornada site (New Mexico, USA), Griffith site (Australia) and Audubon site (Arizona, USA). Water vapour flux was found to contribute significantly to the water and heat transfer in the upper soil layers. This was mainly due to isothermal vapour diffusion; thermal vapour flux also played a role at the Jornada site just after rainfall events. Inclusion of water vapour flux had an effect on the diurnal evolution of evaporation, soil moisture content and surface temperature. The incorporation of additional processes, such as water vapour flux among others, into LSMs may improve the coupling between the upper soil layers and the atmosphere, which in turn could increase the reliability of weather and climate predictions.
Resumo:
During the 20th century, solar activity increased in magnitude to a so-called grand maximum. It is probable that this high level of solar activity is at or near its end. It is of great interest whether any future reduction in solar activity could have a significant impact on climate that could partially offset the projected anthropogenic warming. Observations and reconstructions of solar activity over the last 9000 years are used as a constraint on possible future variations to produce probability distributions of total solar irradiance over the next 100 years. Using this information, with a simple climate model, we present results of the potential implications for future projections of climate on decadal to multidecadal timescales. Using one of the most recent reconstructions of historic total solar irradiance, the likely reduction in the warming by 2100 is found to be between 0.06 and 0.1 K, a very small fraction of the projected anthropogenic warming. However, if past total solar irradiance variations are larger and climate models substantially underestimate the response to solar variations, then there is a potential for a reduction in solar activity to mitigate a small proportion of the future warming, a scenario we cannot totally rule out. While the Sun is not expected to provide substantial delays in the time to reach critical temperature thresholds, any small delays it might provide are likely to be greater for lower anthropogenic emissions scenarios than for higher-emissions scenarios.
Resumo:
Current variability of precipitation (P) and its response to surface temperature (T) are analysed using coupled(CMIP5) and atmosphere-only (AMIP5) climate model simulations and compared with observational estimates. There is striking agreement between Global Precipitation Climatology Project (GPCP) observed and AMIP5 simulated P anomalies over land both globally and in the tropics suggesting that prescribed sea surface temperature and realistic radiative forcings are sufficient for simulating the interannual variability in continental P. Differences between the observed and simulated P variability over the ocean, originate primarily from the wet tropical regions, in particular the western Pacific, but are reduced slightly after 1995. All datasets show positive responses of P to T globally of around 2 %/K for simulations and 3-4 %/K in GPCP observations but model responses over the tropical oceans are around 3 times smaller than GPCP over the period 1988-2005. The observed anticorrelation between land and ocean P, linked with El Niño Southern Oscillation, is captured by the simulations. All data sets over the tropical ocean show a tendency for wet regions to become wetter and dry regions drier with warming. Over the wet region (75% precipitation percentile), the precipitation response is ~13-15%/K for GPCP and ~5%/K for models while trends in P are 2.4%/decade for GPCP, 0.6% /decade for CMIP5 and 0.9%/decade for AMIP5 suggesting that models are underestimating the precipitation responses or a deficiency exists in the satellite datasets.
Resumo:
Accurate observations of cloud microphysical properties are needed for evaluating and improving the representation of cloud processes in climate models and better estimate of the Earth radiative budget. However, large differences are found in current cloud products retrieved from ground-based remote sensing measurements using various retrieval algorithms. Understanding the differences is an important step to address uncertainties in the cloud retrievals. In this study, an in-depth analysis of nine existing ground-based cloud retrievals using ARM remote sensing measurements is carried out. We place emphasis on boundary layer overcast clouds and high level ice clouds, which are the focus of many current retrieval development efforts due to their radiative importance and relatively simple structure. Large systematic discrepancies in cloud microphysical properties are found in these two types of clouds among the nine cloud retrieval products, particularly for the cloud liquid and ice particle effective radius. Note that the differences among some retrieval products are even larger than the prescribed uncertainties reported by the retrieval algorithm developers. It is shown that most of these large differences have their roots in the retrieval theoretical bases, assumptions, as well as input and constraint parameters. This study suggests the need to further validate current retrieval theories and assumptions and even the development of new retrieval algorithms with more observations under different cloud regimes.
Resumo:
A multimodel assessment of the performance of chemistry-climate models (CCMs) in the extratropical upper troposphere/lower stratosphere (UTLS) is conducted for the first time. Process-oriented diagnostics are used to validate dynamical and transport characteristics of 18 CCMs using meteorological analyses and aircraft and satellite observations. The main dynamical and chemical climatological characteristics of the extratropical UTLS are generally well represented by the models, despite the limited horizontal and vertical resolution. The seasonal cycle of lowermost stratospheric mass is realistic, however with a wide spread in its mean value. A tropopause inversion layer is present in most models, although the maximum in static stability is located too high above the tropopause and is somewhat too weak, as expected from limited model resolution. Similar comments apply to the extratropical tropopause transition layer. The seasonality in lower stratospheric chemical tracers is consistent with the seasonality in the Brewer-Dobson circulation. Both vertical and meridional tracer gradients are of similar strength to those found in observations. Models that perform less well tend to use a semi-Lagrangian transport scheme and/or have a very low resolution. Two models, and the multimodel mean, score consistently well on all diagnostics, while seven other models score well on all diagnostics except the seasonal cycle of water vapor. Only four of the models are consistently below average. The lack of tropospheric chemistry in most models limits their evaluation in the upper troposphere. Finally, the UTLS is relatively sparsely sampled by observations, limiting our ability to quantitatively evaluate many aspects of model performance.
Resumo:
The mesospheric response to the 2002 Antarctic Stratospheric Sudden Warming (SSW) is analysed using the Canadian Middle Atmosphere Model Data Assimilation System (CMAM-DAS), where it represents a vertical propagation of information from the observations into the data-free mesosphere. The CMAM-DAS simulates a cooling in the lowest part of the mesosphere which is accomplished by resolved motions, but which is extended to the mid- to upper mesosphere by the response of the model's non-orographic gravity-wave drag parameterization to the change in zonal winds. The basic mechanism is that elucidated by Holton consisting of a net eastward wave-drag anomaly in the mesosphere during the SSW, although in this case there is a net upwelling in the polar mesosphere. Since the zonal-mean mesospheric response is shown to be predictable, this demonstrates that variations in the mesospheric state can be slaved to the lower atmosphere through gravity-wave drag.
Resumo:
The global behavior of the extratropical tropopause transition layer (ExTL) is investigated using O3, H2O, and CO measurements from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) on Canada’s SCISAT-1 satellite obtained between February 2004 and May 2007. The ExTL depth is derived using H2O-O3 and CO-O3 correlations. The ExTL top derived from H2O-O3 shows an increase from roughly 1–1.5 km above the thermal tropopause in the subtropics to 3–4 km (2.5–3.5 km) in the north (south) polar region, implying somewhat weaker tropospherestratosphere- transport in the Southern Hemisphere. The ExTL bottom extends ~1 km below the thermal tropopause, indicating a persistent stratospheric influence on the troposphere at all latitudes. The ExTL top derived from the CO-O3 correlation is lower, at 2 km or ~345 K (1.5 km or ~335 K) in the Northern (Southern) Hemisphere. Its annual mean coincides with the relative temperature maximum just above the thermal tropopause. The vertical CO gradient maximizes at the thermal tropopause, indicating a local minimum in mixing within the tropopause region. The seasonal changes in and the scales of the vertical H2O gradients show a similar pattern as the static stability structure of the tropopause inversion layer (TIL), which provides observational support for the hypothesis that H2O plays a radiative role in forcing and maintaining the structure of the TIL.
Resumo:
[1] High-elevation forests represent a large fraction of potential carbon uptake in North America, but this uptake is not well constrained by observations. Additionally, forests in the Rocky Mountains have recently been severely damaged by drought, fire, and insect outbreaks, which have been quantified at local scales but not assessed in terms of carbon uptake at regional scales. The Airborne Carbon in the Mountains Experiment was carried out in 2007 partly to assess carbon uptake in western U.S. mountain ecosystems. The magnitude and seasonal change of carbon uptake were quantified by (1) paired upwind-downwind airborne CO2 observations applied in a boundary layer budget, (2) a spatially explicit ecosystem model constrained using remote sensing and flux tower observations, and (3) a downscaled global tracer transport inversion. Top-down approaches had mean carbon uptake equivalent to flux tower observations at a subalpine forest, while the ecosystem model showed less. The techniques disagreed on temporal evolution. Regional carbon uptake was greatest in the early summer immediately following snowmelt and tended to lessen as the region experienced dry summer conditions. This reduction was more pronounced in the airborne budget and inversion than in flux tower or upscaling, possibly related to lower snow water availability in forests sampled by the aircraft, which were lower in elevation than the tower site. Changes in vegetative greenness associated with insect outbreaks were detected using satellite reflectance observations, but impacts on regional carbon cycling were unclear, highlighting the need to better quantify this emerging disturbance effect on montane forest carbon cycling.
Resumo:
We present an approach for dealing with coarse-resolution Earth observations (EO) in terrestrial ecosystem data assimilation schemes. The use of coarse-scale observations in ecological data assimilation schemes is complicated by spatial heterogeneity and nonlinear processes in natural ecosystems. If these complications are not appropriately dealt with, then the data assimilation will produce biased results. The “disaggregation” approach that we describe in this paper combines frequent coarse-resolution observations with temporally sparse fine-resolution measurements. We demonstrate the approach using a demonstration data set based on measurements of an Arctic ecosystem. In this example, normalized difference vegetation index observations are assimilated into a “zero-order” model of leaf area index and carbon uptake. The disaggregation approach conserves key ecosystem characteristics regardless of the observation resolution and estimates the carbon uptake to within 1% of the demonstration data set “truth.” Assimilating the same data in the normal manner, but without the disaggregation approach, results in carbon uptake being underestimated by 58% at an observation resolution of 250 m. The disaggregation method allows the combination of multiresolution EO and improves in spatial resolution if observations are located on a grid that shifts from one observation time to the next. Additionally, the approach is not tied to a particular data assimilation scheme, model, or EO product and can cope with complex observation distributions, as it makes no implicit assumptions of normality.