906 resultados para Aesthetic and ideological evolution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Covalent fusions between an mRNA and the peptide or protein that it encodes can be generated by in vitro translation of synthetic mRNAs that carry puromycin, a peptidyl acceptor antibiotic, at their 3 end. The stable linkage between the informational (nucleic acid) and functional (peptide) domains of the resulting joint molecules allows a specific mRNA to be enriched from a complex mixture of mRNAs based on the properties of its encoded peptide. Fusions between a synthetic mRNA and its encoded myc epitope peptide have been enriched from a pool of random sequence mRNA-peptide fusions by immunoprecipitation. Covalent RNA-peptide fusions should provide an additional route to the in vitro selection and directed evolution of proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in genes encoding transcriptional regulators can alter development and are important components of the molecular mechanisms of morphological evolution. MADS-box genes encode transcriptional regulators of diverse and important biological functions. In plants, MADS-box genes regulate flower, fruit, leaf, and root development. Recent sequencing efforts in Arabidopsis have allowed a nearly complete sampling of the MADS-box gene family from a single plant, something that was lacking in previous phylogenetic studies. To test the long-suspected parallel between the evolution of the MADS-box gene family and the evolution of plant form, a polarized gene phylogeny is necessary. Here we suggest that a gene duplication ancestral to the divergence of plants and animals gave rise to two main lineages of MADS-box genes: TypeI and TypeII. We locate the root of the eukaryotic MADS-box gene family between these two lineages. A novel monophyletic group of plant MADS domains (AGL34 like) seems to be more closely related to previously identified animal SRF-like MADS domains to form TypeI lineage. Most other plant sequences form a clear monophyletic group with animal MEF2-like domains to form TypeII lineage. Only plant TypeII members have a K domain that is downstream of the MADS domain in most plant members previously identified. This suggests that the K domain evolved after the duplication that gave rise to the two lineages. Finally, a group of intermediate plant sequences could be the result of recombination events. These analyses may guide the search for MADS-box sequences in basal eukaryotes and the phylogenetic placement of new genes from other plant species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wild-type Arabidopsis plants, the starch-deficient mutant TL46, and the near-starchless mutant TL25 were evaluated by noninvasive in situ methods for their capacity for net CO2 assimilation, true rates of photosynthetic O2 evolution (determined from chlorophyll fluorescence measurements of photosystem II), partitioning of photosynthate into sucrose and starch, and plant growth. Compared with wild-type plants, the starch mutants showed reduced photosynthetic capacity, with the largest reduction occurring in mutant TL25 subjected to high light and increased CO2 partial pressure. The extent of stimulation of CO2 assimilation by increasing CO2 or by reducing O2 partial pressure was significantly less for the starch mutants than for wild-type plants. Under high light and moderate to high levels of CO2, the rates of CO2 assimilation and O2 evolution and the percentage inhibition of photosynthesis by low O2 were higher for the wild type than for the mutants. The relative rates of 14CO2 incorporation into starch under high light and high CO2 followed the patterns of photosynthetic capacity, with TL46 showing 31% to 40% of the starch-labeling rates of the wild type and TL25 showing less than 14% incorporation. Overall, there were significant correlations between the rates of starch synthesis and CO2 assimilation and between the rates of starch synthesis and cumulative leaf area. These results indicate that leaf starch plays an important role as a transient reserve, the synthesis of which can ameliorate any potential reduction in photosynthesis caused by feedback regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genomic era revolutionized evolutionary biology. The enigma of genotypic-phenotypic diversity and biodiversity evolution of genes, genomes, phenomes, and biomes, reviewed here, was central in the research program of the Institute of Evolution, University of Haifa, since 1975. We explored the following questions. (i) How much of the genomic and phenomic diversity in nature is adaptive and processed by natural selection? (ii) What is the origin and evolution of adaptation and speciation processes under spatiotemporal variables and stressful macrogeographic and microgeographic environments? We advanced ecological genetics into ecological genomics and analyzed globally ecological, demographic, and life history variables in 1,200 diverse species across life, thousands of populations, and tens of thousands of individuals tested mostly for allozyme and partly for DNA diversity. Likewise, we tested thermal, chemical, climatic, and biotic stresses in several model organisms. Recently, we introduced genetic maps and quantitative trait loci to elucidate the genetic basis of adaptation and speciation. The genomephenome holistic model was deciphered by the global regressive, progressive, and convergent evolution of subterranean mammals. Our results indicate abundant genotypic and phenotypic diversity in nature. The organization and evolution of molecular and organismal diversity in nature at global, regional, and local scales are nonrandom and structured; display regularities across life; and are positively correlated with, and partly predictable by, abiotic and biotic environmental heterogeneity and stress. Biodiversity evolution, even in small isolated populations, is primarily driven by natural selection, including diversifying, balancing, cyclical, and purifying selective regimes, interacting with, but ultimately overriding, the effects of mutation, migration, and stochasticity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dichotomy between two groups of workers on neuroelectrical activity is retarding progress. To study the interrelations between neuronal unit spike activity and compound field potentials of cell populations is both unfashionable and technically challenging. Neither of the mutual disparagements is justified: that spikes are to higher functions as the alphabet is to Shakespeare and that slow field potentials are irrelevant epiphenomena. Spikes are not the basis of the neural code but of multiple codes that coexist with nonspike codes. Field potentials are mainly information-rich signs of underlying processes, but sometimes they are also signals for neighboring cells, that is, they exert influence. This paper concerns opportunities for new research with many channels of wide-band (spike and slow wave) recording. A wealth of structure in time and three-dimensional space is different at each scalemicro-, meso-, and macroactivity. The depth of our ignorance is emphasized to underline the opportunities for uncovering new principles. We cannot currently estimate the relative importance of spikes and synaptic communication vs. extrasynaptic graded signals. In spite of a preponderance of literature on the former, we must consider the latter as probably important. We are in a primitive stage of looking at the time series of wide-band voltages in the compound, local field, potentials and of choosing descriptors that discriminate appropriately among brain loci, states (functions), stages (ontogeny, senescence), and taxa (evolution). This is not surprising, since the brains in higher species are surely the most complex systems known. They must be the greatest reservoir of new discoveries in nature. The complexity should not deter us, but a dose of humility can stimulate the flow of imaginative juices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comparative genomics offers unparalleled opportunities to integrate historically distinct disciplines, to link disparate biological kingdoms, and to bridge basic and applied science. Cross-species, cross-genera, and cross-kingdom comparisons are proving key to understanding how genes are structured, how gene structure relates to gene function, and how changes in DNA have given rise to the biological diversity on the planet. The application of genomics to the study of crop species offers special opportunities for innovative approaches for combining sequence information with the vast reservoirs of historical information associated with crops and their evolution. The grasses provide a particularly well developed system for the development of tools to facilitate comparative genetic interpretation among members of a diverse and evolutionarily successful family. Rice provides advantages for genomic sequencing because of its small genome and its diploid nature, whereas each of the other grasses provides complementary genetic information that will help extract meaning from the sequence data. Because of the importance of the cereals to the human food chain, developments in this area can lead directly to opportunities for improving the health and productivity of our food systems and for promoting the sustainable use of natural resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemical and isotopic compositions of oceanic biogenic and authigenic minerals contain invaluable information on the evolution of seawater, hence on the history of interaction between tectonics, climate, ocean circulation, and the evolution of life. Important advances and greater understanding of (a) key minor and trace element cycles with various residence times, (b) isotopic sources and sinks and fractionation behaviors, and (c) potential diagenetic problems, as well as developments in high-precision instrumentation, recently have been achieved. These advances provided new compelling evidence that neither gradualism nor uniformitarianism can explain many of the new important discoveries obtained from the chemistry and isotopic compositions of oceanic minerals. Presently, the best-developed geochemical proxies in biogenic carbonates are 18O/16O and Sr/Ca ratios (possibly Mg/Ca) for temperature; 87Sr/86Sr for input sources, Cd/Ca and Ba/Ca ratios for phosphate and alkalinity concentrations, respectively, thus also for ocean circulation; 13C/12C for ocean productivity; B isotopes for seawater pH;, U, Th isotopes, and 14C for dating; and Sr and Mn concentrations for diagenesis. The oceanic authigenic minerals most widely used for chemical paleoceanography are barite, evaporite sulfates, and hydrogenous ferromanganese nodules. Marine barite is an effective alternative monitor of seawater 87Sr/86Sr, especially where carbonates are diagenetically altered or absent. It also provides a high-resolution record of seawater sulfate S isotopes, (evaporite sulfates only carry an episodic record), with new insights on factors affecting the S and C cycles and atmospheric oxygen. High-resolution studies of Sr, Nd, and Pb isotopes of well-dated ferromanganese nodules contain invaluable records on climate driven changes in oceanic circulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The determination of complete genome sequences provides us with an opportunity to describe and analyze evolution at the comprehensive level of genomes. Here we compare nine genomes with respect to their protein coding genes at two levels: (i) we compare genomes as bags of genes and measure the fraction of orthologs shared between genomes and (ii) we quantify correlations between genes with respect to their relative positions in genomes. Distances between the genomes are related to their divergence times, measured as the number of amino acid substitutions per site in a set of 34 orthologous genes that are shared among all the genomes compared. We establish a hierarchy of rates at which genomes have changed during evolution. Protein sequence identity is the most conserved, followed by the complement of genes within the genome. Next is the degree of conservation of the order of genes, whereas gene regulation appears to evolve at the highest rate. Finally, we show that some genomes are more highly organized than others: they show a higher degree of the clustering of genes that have orthologs in other genomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complexity originates from the tendency of large dynamical systems to organize themselves into a critical state, with avalanches or "punctuations" of all sizes. In the critical state, events which would otherwise be uncoupled become correlated. The apparent, historical contingency in many sciences, including geology, biology, and economics, finds a natural interpretation as a self-organized critical phenomenon. These ideas are discussed in the context of simple mathematical models of sandpiles and biological evolution. Insights are gained not only from numerical simulations but also from rigorous mathematical analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The competing powers of Saudi Arabia and Iran continue to redress and reverse the strategic imbalance and direction of the Middle Easts regional politics. The 1979 Iranian Revolution catapulted these two states into an embittered rivalry. The fall of Saddam Hussein following the 2003 U.S. led invasion, the establishment of a Shiite Iraq and the 2011 Arab Uprisings have further inflamed tensions between Saudi Arabia and Iran. Iran and Saudi Arabia have not confronted each other militarily, but rather have divided the region into two armed camps on the basis of political and religious ideology in seeking regional allies and promulgating sectarianism as they continue to exploit the regions weak states in a series of proxy wars ranging from conflicts in Iraq to Lebanon. The Saudi-Iranian strategic and geopolitical rivalry is further complicated by a religious and ideological rivalry, as tensions represent two opposing aspirations for Islamic leadership with two vastly differing political systems. The conflict is between Saudi Arabia, representing Sunni Islam via Wahhabism, and Iran, representing Shiite Islam through Khomeinism. The nature of the Saudi-Iranian rivalry has led many Middle East experts to identify their rivalry as a New Middle East Cold War. The Saudi-Iranian rivalry has important implications for regional stability and U.S. national security interests. Therefore, this thesis seeks to address the question: Is a cold war framework applicable when analyzing the Saudi Arabian and Iranian relationship?

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research presents the explanatory model of the process of reconstruction of the social problem of Intimate Partner Violence (I.P.V) in Spain during last five years, with special attention to the role of media in this process. Using a content analysis of the three more diffused general newspapers, a content analysis of the minutes of the Parliament, and the statistics of the police reports and murders, from January of 1997 to December of 2001, it observes the relationship between the evolution of the incidence of Intimate Partner Violence (I.P.V) (measured by the number of deaths and the number of police reports) and the evolution of stories about this topic in press. It also studies the interconnection of the two previous variables with the political answer to the problem (measured by the interventions on the I.P.V. in the Senate and in the Congress). Data shows that, even though police reports have increased due to the contribution of politics and media, I.P.V murders keep on growing up.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sandstone petrography and mudstone mineralogy and geochemistry of Triassic mudstones and sandstones from continental redbeds of the Malaguide Complex (Betic Cordillera, southern Spain) provide useful information on provenance, palaeoclimate and geodynamics during the early stages of the Pangea break-up, and on their diagenetic evolution. The sandstones are quartzarenites to sub-litharenites, with minor lithic fragments and rare feldspars. The mudstone samples show a PAAS like elemental distribution. The samples likely record recycling processes from their metasedimentary basement rocks that significantly affected the weathering indices, and monitors cumulative effects, including a first cycle of weathering at the source rocks. Sandstone composition and chemicalmineralogical features of mudstones record a provenance derived from continental block and recycled orogen that were weathered under warm and episodically wet climate. Source areas were located towards the east of the present-day Malaguide outcrops, and were formed by fairly silicic rock types, made up mainly of Palaezoic metasedimentary rocks, similar to those of the Paleozoic underlying series, with subordinate contributions from magmaticmetamorphic sources, and a rare supply from mafic metavolcanic rocks. Clay-mineral distribution of mudstones is dominated by illite and illite/smectite mixed-layer that result from differences in provenance, weathering, and burial/temperature history. Illite crystallinity values, illitization of kaolinite, occurrence of typical authigenic minerals and apatite fission-track studies, coupled with a subsidence analysis of the whole Malaguide succession suggest burial depths of at least 46 km with temperatures of 140160 C, typical of the burial diagenetic stage, and confirm the Middle Miocene exhumation of the Betic Internal Domain tectonic stack topped by the Malaguide Complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isolated neutron stars (NSs) show a bewildering variety of astrophysical manifestations, presumably shaped by the magnetic field strength and topology at birth. Here, using state-of-the-art calculations of the coupled magnetic and thermal evolution of NSs, we compute the thermal spectra and pulse profiles expected for a variety of initial magnetic field configurations. In particular, we contrast models with purely poloidal magnetic fields to models dominated by a strong internal toroidal component. We find that, while the former displays double-peaked profiles and very low pulsed fractions, in the latter, the anisotropy in the surface temperature produced by the toroidal field often results in a single pulse profile, with pulsed fractions that can exceed the 5060percent level even for perfectly isotropic local emission. We further use our theoretical results to generate simulated observed spectra, and show that blackbody (BB) fits result in inferred radii that can be significantly smaller than the actual NS radius, even as low as 12km for old NSs with strong internal toroidal fields and a high absorption column density along their line of sight. We compute the size of the inferred BB radius for a few representative magnetic field configurations, NS ages and magnitudes of the column density. Our theoretical results are of direct relevance to the interpretation of X-ray observations of isolated NSs, as well as to the constraints on the equation of state of dense matter through radius measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En los ltimos aos estamos asistiendo a un estudio, cada vez ms pormenorizado, de las figuras locales que han marcado la propia evolucin de la dictadura a escala local caso del alcalde Porcioles para Barcelona. Ello ha permitido profundizar en los apoyos, evolucin ideolgica y rupturas dentro del propio rgimen franquista. Para el caso de la ciudad de Valencia, aparte de las biografas conocidas de miembros de la oposicin al rgimen, nos falta un estudio en profundidad de determinados perfiles polticos que ayudaron en la instauracin del franquismo y lo apoyaron prcticamente hasta el final. Uno de ellos fue Adolfo Rincn de Arellano, presidente de la Diputacin, alcalde de Valencia y Consejero Nacional del Movimiento aos despus. Un estudio en profundidad de su vida y evolucin ideolgica permite comprender las caractersticas propias de la dictadura en territorio valenciano.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research studies the self-heating produced by the application of an electric current to conductive cement pastes with carbonaceous materials. The main parameters studied were: type and percentage of carbonaceous materials, effect of moisture, electrical resistance, power consumption, maximum temperature reached and its evolution and ice melting kinetics are the main parameters studied. A mathematical model is also proposed, which predicts that the degree of heating is adjustable with the applied voltage. Finally, the results have been applied to ensure that cementitious materials studied are feasible to control ice layers in transportation infrastructures.