883 resultados para Acute respiratory infection
Resumo:
The treatment of peri-prosthetic joint infection (PJI) of the ankle is not standardised. It is not clear whether an algorithm developed for hip and knee PJI can be used in the management of PJI of the ankle. We evaluated the outcome, at two or more years post-operatively, in 34 patients with PJI of the ankle, identified from a cohort of 511 patients who had undergone total ankle replacement. Their median age was 62.1 years (53.3 to 68.2), and 20 patients were women. Infection was exogenous in 28 (82.4%) and haematogenous in six (17.6%); 19 (55.9%) were acute infections and 15 (44.1%) chronic. Staphylococci were the cause of 24 infections (70.6%). Surgery with retention of one or both components was undertaken in 21 patients (61.8%), both components were replaced in ten (29.4%), and arthrodesis was undertaken in three (8.8%). An infection-free outcome with satisfactory function of the ankle was obtained in 23 patients (67.6%). The best rate of cure followed the exchange of both components (9/10, 90%). In the 21 patients in whom one or both components were retained, four had a relapse of the same infecting organism and three had an infection with another organism. Hence the rate of cure was 66.7% (14 of 21). In these 21 patients, we compared the treatment given to an algorithm developed for the treatment of PJI of the knee and hip. In 17 (80.9%) patients, treatment was not according to the algorithm. Most (11 of 17) had only one criterion against retention of one or both components. In all, ten of 11 patients with severe soft-tissue compromise as a single criterion had a relapse-free survival. We propose that the treatment concept for PJI of the ankle requires adaptation of the grading of quality of the soft tissues. Cite this article: Bone Joint J 2014;96-B:772-7.
Resumo:
Since the publication of "A Compendium of Strategies to Prevent Healthcare-Associated Infections in Acute Care Hospitals" in 2008, prevention of healthcare-associated infections (HAIs) has become a national priority. Despite improvements, preventable HAIs continue to occur. The 2014 updates to the Compendium were created to provide acute care hospitals with up-to-date, practical, expert guidance to assist in prioritizing and implementing their HAI prevention efforts. They are the product of a highly collaborative effort led by the Society for Healthcare Epidemiology of America (SHEA), the Infectious Diseases Society of America (IDSA), the American Hospital Association (AHA), the Association for Professionals in Infection Control and Epidemiology (APIC), and The Joint Commission, with major contributions from representatives of a number of organizations and societies with content expertise, including the Centers for Disease Control and Prevention (CDC), the Institute for Healthcare Improvement (IHI), the Pediatric Infectious Diseases Society (PIDS), the Society for Critical Care Medicine (SCCM), the Society for Hospital Medicine (SHM), and the Surgical Infection Society (SIS).
Resumo:
Since the publication of "A Compendium of Strategies to Prevent Healthcare-Associated Infections in Acute Care Hospitals" in 2008, prevention of healthcare-associated infections (HAIs) has become a national priority. Despite improvements, preventable HAIs continue to occur. The 2014 updates to the Compendium were created to provide acute care hospitals with up-to-date, practical, expert guidance to assist in prioritizing and implementing their HAI prevention efforts. They are the product of a highly collaborative effort led by the Society for Healthcare Epidemiology of America (SHEA), the Infectious Diseases Society of America (IDSA), the American Hospital Association (AHA), the Association for Professionals in Infection Control and Epidemiology (APIC), and The Joint Commission, with major contributions from representatives of a number of organizations and societies with content expertise, including the Centers for Disease Control and Prevention (CDC), the Institute for Healthcare Improvement (IHI), the Pediatric Infectious Diseases Society (PIDS), the Society for Critical Care Medicine (SCCM), the Society for Hospital Medicine (SHM), and the Surgical Infection Society (SIS).
Resumo:
BACKGROUND Through 2 international traveler-focused surveillance networks (GeoSentinel and TropNet), we identified and investigated a large outbreak of acute muscular sarcocystosis (AMS), a rarely reported zoonosis caused by a protozoan parasite of the genus Sarcocystis, associated with travel to Tioman Island, Malaysia, during 2011-2012. METHODS Clinicians reporting patients with suspected AMS to GeoSentinel submitted demographic, clinical, itinerary, and exposure data. We defined a probable case as travel to Tioman Island after 1 March 2011, eosinophilia (>5%), clinical or laboratory-supported myositis, and negative trichinellosis serology. Case confirmation required histologic observation of sarcocysts or isolation of Sarcocystis species DNA from muscle biopsy. RESULTS Sixty-eight patients met the case definition (62 probable and 6 confirmed). All but 2 resided in Europe; all were tourists and traveled mostly during the summer months. The most frequent symptoms reported were myalgia (100%), fatigue (91%), fever (82%), headache (59%), and arthralgia (29%); onset clustered during 2 distinct periods: "early" during the second and "late" during the sixth week after departure from the island. Blood eosinophilia and elevated serum creatinine phosphokinase (CPK) levels were observed beginning during the fifth week after departure. Sarcocystis nesbitti DNA was recovered from 1 muscle biopsy. CONCLUSIONS Clinicians evaluating travelers returning ill from Malaysia with myalgia, with or without fever, should consider AMS, noting the apparent biphasic aspect of the disease, the later onset of elevated CPK and eosinophilia, and the possibility for relapses. The exact source of infection among travelers to Tioman Island remains unclear but needs to be determined to prevent future illnesses.
Resumo:
RATIONALE Not all patients with acute pulmonary embolism (PE) have a high risk of an adverse short-term outcome. OBJECTIVES This prospective cohort study aimed to develop a multimarker prognostic model that accurately classifies normotensive patients with PE into low and high categories of risk of adverse medical outcomes. METHODS The study enrolled 848 outpatients from the PROTECT (PROgnosTic valuE of Computed Tomography) study (derivation cohort) and 529 patients from the Prognostic Factors for Pulmonary Embolism (PREP) study (validation cohort). Investigators assessed study participants for a 30-day complicated course, defined as death from any cause, hemodynamic collapse, and/or adjudicated recurrent PE. MEASUREMENTS AND MAIN RESULTS A complicated course occurred in 63 (7.4%) of the 848 normotensive patients with acute symptomatic PE in the derivation cohort and in 24 patients (4.5%) in the validation cohort. The final model included the simplified Pulmonary Embolism Severity Index, cardiac troponin I, brain natriuretic peptide, and lower limb ultrasound testing. The model performed similarly in the derivation (c-index of 0.75) and validation (c-index of 0.85) cohorts. The combination of the simplified Pulmonary Embolism Severity Index and brain natriuretic peptide testing showed a negative predictive value for a complicated course of 99.1 and 100% in the derivation and validation cohorts, respectively. The combination of all modalities had a positive predictive value for the prediction of a complicated course of 25.8% in the derivation cohort and 21.2% in the validation cohort. CONCLUSIONS For normotensive patients who have acute PE, we derived and validated a multimarker model that predicts all-cause mortality, hemodynamic collapse, and/or recurrent PE within the following 30 days.
Resumo:
An outbreak of porcine reproductive and respiratory syndrome virus (PRRSV) occurred in November 2012 in Switzerland (CH), traditionally PRRSV-free. It was detected after a German boar stud informed a semen importer about the detection of PRRSV during routine monitoring. Tracing of semen deliveries revealed 26 Swiss sow herds that had used semen from this stud after its last negative routine monitoring and 62 further contact herds. All herds were put under movement restrictions and examined serologically and virologically. As a first measure, 59 sows from five herds that had previously been inseminated with suspicious semen were slaughtered and tested immediately. Investigations in the stud resulted in 8 positive boars with recent semen deliveries to CH (Seven with antibodies and virus, one with antibodies only). In one boar out of six tested, virus was detected in semen. Of the 59 slaughtered sows, five from three herds were virus-positive. In one herd, the virus had spread, and all pigs were slaughtered or non-marketable animals euthanized. In the remaining herds, no further infections were detected. After confirmatory testings in all herds 3 weeks after the first examination gave negative results, restrictions were lifted in January 2013, and Switzerland regained its PRRSV-free status. The events demonstrate that import of semen from non-PRRS-free countries - even from negative studs - poses a risk, because monitoring protocols in boar studs are often insufficient to timely detect an infection, and infections of sows/herds occur even with low numbers of semen doses. The outbreak was eradicated successfully mainly due to the high disease awareness of the importer and because immediate actions were taken before clinical or laboratory diagnosis of a single case in the country was made. To minimize the risk of an introduction of PRRSV in the future, stricter import guidelines for boar semen have been implemented.
Resumo:
BackgroundAcute cough is a common problem in general practice and is often caused by a self-limiting, viral infection. Nonetheless, antibiotics are often prescribed in this situation, which may lead to unnecessary side effects and, even worse, the development of antibiotic resistant microorganisms worldwide. This study assessed the role of point-of-care C-reactive protein (CRP) testing and other predictors of antibiotic prescription in patients who present with acute cough in general practice.MethodsPatient characteristics, symptoms, signs, and laboratory and X-ray findings from 348 patients presenting to 39 general practitioners with acute cough, as well as the GPs themselves, were recorded by fourth-year medical students during their three-week clerkships in general practice. Patient and clinician characteristics of those prescribed and not-prescribed antibiotics were compared using a mixed-effects model.ResultsOf 315 patients included in the study, 22% were prescribed antibiotics. The two groups of patients, those prescribed antibiotics and those treated symptomatically, differed significantly in age, demand for antibiotics, days of cough, rhinitis, lung auscultation, haemoglobin level, white blood cell count, CRP level and the GP¿s license to self-dispense antibiotics. After regression analysis, only the CRP level, the white blood cell count and the duration of the symptoms were statistically significant predictors of antibiotic prescription.ConclusionsThe antibiotic prescription rate of 22% in adult patients with acute cough in the Swiss primary care setting is low compared to other countries. GPs appear to use point-of-care CRP testing in addition to the duration of clinical symptoms to help them decide whether or not to prescribe antibiotics.
Resumo:
Immunological homeostasis in the respiratory tract is thought to require balanced interactions between networks of dendritic cell (DC) subsets in lung microenvironments in order to regulate tolerance or immunity to inhaled antigens and pathogens. Influenza A virus (IAV) poses a serious threat of long-term disruption to this balance through its potent pro-inflammatory activities. In this study, we have used a BALB/c mouse model of A/PR8/34 H1N1 Influenza Type A Virus infection to examine the effects of IAV on respiratory tissue DC subsets during the recovery phase following clearance of the virus. In adult mice, we found differences in the kinetics and activation states of DC residing in the airway mucosa (AMDC) compared to those in the parenchymal lung (PLDC) compartments. A significant depletion in the percentage of AMDC was observed at day 4 post-infection that was associated with a change in steady-state CD11b+ and CD11b- AMDC subset frequencies and significantly elevated CD40 and CD80 expression and that returned to baseline by day 14 post-infection. In contrast, percentages and total numbers of PLDC were significantly elevated at day 14 and remained so until day 21 post-infection. Accompanying this was a change in CD11b+and CD11b- PLDC subset frequencies and significant increase in CD40 and CD80 expression at these time points. Furthermore, mice infected with IAV at 4 weeks of age showed a significant increase in total numbers of PLDC, and increased CD40 expression on both AMDC and PLDC, when analysed as adults 35 days later. These data suggest that the rate of recovery of DC populations following IAV infection differs in the mucosal and parenchymal compartments of the lung and that DC populations can remain disrupted and activated for a prolonged period following viral clearance, into adulthood if infection occurred early in life.
Resumo:
The polarization into M1 and M2 macrophages (MΦ) is essential to understand MΦ function. Consequently, the aim of this study was to determine the impact of IFN-γ (M1), IL-4 (M2) and IFN-β activation of MΦ on the susceptibility to genotype 1 and 2 porcine reproductive respiratory syndrome (PRRS) virus (PRRSV) strains varying in virulence. To this end, monocyte-derived MΦ were generated by culture during 72h and polarization was induced for another 24h by addition of IFN-γ, IL-4 or IFN-β. MΦ were infected with a collection of PRRSV isolates belonging to genotype 1 and genotype 2. Undifferentiated and M2 MΦ were highly susceptible to all PRRSV isolates. In contrast, M1 and IFN-β activated MΦ were resistant to low pathogenic genotype 1 PRRSV but not or only partially to genotype 2 PRRSV strains. Interestingly, highly virulent PRRSV isolates of both genotypes showed particularly high levels of infection compared with the prototype viruses in both M1 and IFN-β-treated MΦ (P<0.05). This was seen at the level of nucleocapsid expression, viral titres and virus-induced cell death. In conclusion, by using IFN-γ and IFN-β stimulated MΦ it is possible to discriminate between PRRSV varying in genotype and virulence. Genotype 2 PRRSV strains are more efficient at escaping the intrinsic antiviral effects induced by type I and II IFNs. Our in vitro model will help to identify viral genetic elements responsible for virulence, an information important not only to understand PRRS pathogenesis but also for a rational vaccine design. Our results also suggest that monocyte-derived MΦ can be used as a PRRSV infection model instead of alveolar MΦ, avoiding the killing of pigs.
Resumo:
Coronaviruses raise serious concerns as emerging zoonotic viruses without specific antiviral drugs available. Here we screened a collection of 16671 diverse compounds for anti-human coronavirus 229E activity and identified an inhibitor, designated K22, that specifically targets membrane-bound coronaviral RNA synthesis. K22 exerts most potent antiviral activity after virus entry during an early step of the viral life cycle. Specifically, the formation of double membrane vesicles (DMVs), a hallmark of coronavirus replication, was greatly impaired upon K22 treatment accompanied by near-complete inhibition of viral RNA synthesis. K22-resistant viruses contained substitutions in non-structural protein 6 (nsp6), a membrane-spanning integral component of the viral replication complex implicated in DMV formation, corroborating that K22 targets membrane bound viral RNA synthesis. Besides K22 resistance, the nsp6 mutants induced a reduced number of DMVs, displayed decreased specific infectivity, while RNA synthesis was not affected. Importantly, K22 inhibits a broad range of coronaviruses, including Middle East respiratory syndrome coronavirus (MERS-CoV), and efficient inhibition was achieved in primary human epithelia cultures representing the entry port of human coronavirus infection. Collectively, this study proposes an evolutionary conserved step in the life cycle of positive-stranded RNA viruses, the recruitment of cellular membranes for viral replication, as vulnerable and, most importantly, druggable target for antiviral intervention. We expect this mode of action to serve as a paradigm for the development of potent antiviral drugs to combat many animal and human virus infections.
Resumo:
The porcine reproductive and respiratory syndrome virus (PRRSV) is a rapidly evolving and diversifying pathogen necessitating the development of improved vaccines. Immunity to PRRSV is not well understood although there are data suggesting that virus-specific T cell IFN-γ responses play an important role. We therefore aimed to better characterise the T cell response to genotype 1 (European) PRRSV by utilising a synthetic peptide library spanning the entire proteome and a small cohort of pigs rendered immune to PRRSV-1 Olot/91 by repeated experimental infection. Using an IFN-γ ELISpot assay as a read-out, we were able to identify 9 antigenic regions on 5 of the viral proteins and determine the corresponding responder T cell phenotype. The diversity of the IFN-γ response to PRRSV proteins suggests that antigenic regions are scattered throughout the proteome and no one single antigen dominates the T cell response. To address the identification of well-conserved T cell antigens, we subsequently screened groups of pigs infected with a closely related avirulent PRRSV-1 strain (Lelystad) and a divergent virulent subtype 3 strain (SU1-Bel). Whilst T cell responses from both groups were observed against many of the antigens identified in the first study, animals infected with the SU1-Bel strain showed the greatest response against peptides representing the non-structural protein 5. The proteome-wide peptide library screening method used here, as well as the antigens identified, warrant further evaluation in the context of next generation vaccine development.