991 resultados para Accumulation rate, marine organic carbon
Resumo:
Marine organic matter (OM) sinks from surface waters to the seafloor via the biological pump. Benthic communities, which use this sedimented OM as energy and carbon source, produce dissolved organic matter (DOM) in the process of remineralization, enriching the sediment porewater with fresh DOM compounds. We hypothesized that in the oligotrophic deep Arctic basin the molecular signal of freshly deposited primary produced OM is restricted to the surface sediment pore waters which should differ from bottom water and deeper sediment pore water in DOM composition. This study focused on: 1) the molecular composition of the DOM in sediment pore waters of the deep Eurasian Arctic basins, 2) whether the signal of marine vs. terrigenous DOM is represented by different compounds preserved in the sediment pore waters and 3) whether there is any relation between Arctic Ocean ice cover and DOM composition. Molecular data, obtained via 15 Tesla Fourier transform ion cyclotron resonance mass spectrometer, were correlated with environmental parameters by partial least square analysis. The fresher marine detrital OM signal from surface waters was limited to pore waters from < 5 cm sediment depth. The productive ice margin stations showed higher abundances of peptides, unsaturated aliphatics and saturated fatty acids formulae, indicative of fresh OM/pigments deposition, compared to northernmost stations which had stronger aromatic signals. This study contributes to the understanding of the coupling between the Arctic Ocean productivity and its depositional regime, and how it will be altered in response to sea ice retreat and increasing river runoff.
Resumo:
During the Integrated Ocean Drilling Program (IODP) Expedition 307 for the first time a cold-water coral carbonate mound was drilled down through its base into the underlying sediments. In the current study, sample material from within and below Challenger Mound, located in the Belgica carbonate mound province in the Porcupine Basin offshore Ireland, was investigated for its distribution of microbial communities and gas composition using biogeochemical and geochemical approaches to elucidate the question on the initiation of carbonate mounds. Past and living microbial populations are lower in the mound section compared to the underlying sediments or sediments of an upslope reference site. A reason for this might be a reduced substrate feedstock, reflected by low total organic carbon (TOC) contents, in the once coral dominated mound sequence. In contrast, in the reference site a lithostratigraphic sequence with comparatively high TOC contents shows higher abundances of both past and present microbial communities, indicating favourable living conditions from time of sedimentation until today. Composition and isotopic values of gases below the mound base seem to point to a mixed gas of biogenic and thermogenic origin with a higher proportion of biogenic gas. Oil-derived hydrocarbons were not detected at the mound site. This suggests that at least in the investigated part of the mound base the upward flow of fossil hydrocarbons, being one hypothesis for the initiation of the formation of carbonate mounds, seems to be only of minor significance.