941 resultados para Absorption and emission cross-section


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interferometric sensors using optical fibers as a transduction medium have been shown to be sensitive to a variety of physical measurands. A result of this is that the resolution of a system designed to sense strain, for example, may be compromised by fluctuations in the temperature of the environment. The possibility of simultaneously determining the strain and temperature applied to the same piece of highly birefringent fiber is discussed. Second-order effects are shown to be important for long sensing lengths or in the presence of high strains or temperature changes. The results of experiments carried out to verify the theoretical predictions are also described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gastric absorption of feruloylquinic acid and di-O-caffeoylquinic acid analogs has never been investigated despite their potential contribution to the proposed beneficial health effects leading to reduced risk of type 2 diabetes. Using a cultured gastric epithelial model, with an acidic apical pH, the relative permeability coefficients (P(app)) and metabolic fate of a series of chlorogenic acids (CGAs) were investigated. Mechanistic studies were performed in the apical to basal direction and demonstrated differential rates of absorption for different CGA subgroups. For the first time, we show intact absorption of feruloylquinic acids and caffeoylquinic acid lactones across the gastric epithelium (P(app) ~ 0.2 cm/s). Transport seemed to be mainly by passive diffusion, because good linearity was observed over the incubation period and test concentrations, and we speculate that a potential carrier-mediated component may be involved in uptake of certain 4-acyl CGA isomers. In contrast, absorption of intact di-O-caffeoylquinic acids was rapid (P(app) ~ 2-10 cm/s) but nonlinear with respect to time and concentration dependence, which was potentially limited by interaction with an efflux transporter and/or pH gradient dependence. For the first time, methylation is shown in gastric mucosa. Furthermore, isoferulic acid, dimethoxycinnamic acid, and ferulic acid were identified as novel gastric metabolites of CGA biotransformation. We propose that the stomach is the first location for the release of hydroxycinnamic acids, which could explain their early detection after coffee consumption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Waste cooking oils can be converted into fuels to provide economical and environmental benefits. One option is to use such fuels in stationary engines for electricity generation, co-generation or tri-generation application. In this study, biodiesel derived from waste cooking oil was tested in an indirect injection type 3-cylinder Lister Petter biodiesel engine. We compared the combustion and emission characteristics with that of fossil diesel operation. The physical and chemical properties of pure biodiesel (B100) and its blends (20% and 60% vol.) were measured and compared with those of diesel. With pure biodiesel fuel, full engine power was achieved and the cylinder gas pressure diagram showed stable operation. At full load, peak cylinder pressure of B100 operation was almost similar to diesel and peak burn rate of combustion was about 13% higher than diesel. For biodiesel operation, occurrences of peak burn rates were delayed compared to diesel. Fuel line injection pressure was increased by 8.5-14.5% at all loads. In comparison to diesel, the start of combustion was delayed and 90% combustion occurred earlier. At full load, the total combustion duration of B100 operation was almost 16% lower than diesel. Biodiesel exhaust gas emissions contained 3% higher CO2 and 4% lower NOx, as compared to diesel. CO emissions were similar at low load condition, but were decreased by 15 times at full load. Oxygen emission decreased by around 1.5%. Exhaust gas temperatures were almost similar for both biodiesel and diesel operation. At full engine load, the brake specific fuel consumption (on a volume basis) and brake thermal efficiency were respectively about 2.5% and 5% higher compared to diesel. Full engine power was achieved with both blends, and little difference in engine performance and emission results were observed between 20% and 60% blends. The study concludes that biodiesel derived from waste cooking oil gave better efficiency and lower NOx emissions than standard diesel. Copyright © 2012 SAE International.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural Health Monitoring (SHM) systems were developed to evaluate the integrity of a system during operation, and to quickly identify the maintenance problems. They will be used in future aerospace vehicles to improve safety, reduce cost and minimize the maintenance time of a system. Many SHM systems were already developed to evaluate the integrity of plates and used in marine structures. Their implementation in manufacturing processes is still expected. The application of SHM methods for complex geometries and welds are two important challenges in this area of research. This research work started by studying the characteristics of piezoelectric actuators, and a small energy harvester was designed. The output voltages at different frequencies of vibration were acquired to determine the nonlinear characteristics of the piezoelectric stripe actuators. The frequency response was evaluated experimentally. AA battery size energy harvesting devices were developed by using these actuators. When the round and square cross section devices were excited at 50 Hz frequency, they generated 16 V and 25 V respectively. The Surface Response to Excitation (SuRE) and Lamb wave methods were used to estimate the condition of parts with complex geometries. Cutting tools and welded plates were considered. Both approaches used piezoelectric elements that were attached to the surfaces of considered parts. The variation of the magnitude of the frequency response was evaluated when the SuRE method was used. The sum of the square of the differences was calculated. The envelope of the received signal was used for the analysis of wave propagation. Bi-orthogonal wavelet (Binlet) analysis was also used for the evaluation of the data obtained during Lamb wave technique. Both the Lamb wave and SuRE approaches along with the three methods for data analysis worked effectively to detect increasing tool wear. Similarly, they detected defects on the plate, on the weld, and on a separate plate without any sensor as long as it was welded to the test plate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peer reviewed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The temperature of the coolant is known to have significant influence on engine performance and emissions. Whereas existing literature describes the effects of coolant temperature in engines using fossil derived fuels, very few studies have investigated these effects when biofuel is used. In this study, Jatropha oil was blended separately with ethanol and butanol. It was found that the 80% jatropha oil + 20% butanol blend was the most suitable alternative, as its properties were closest to that of fossil diesel. The coolant temperature was varied between 50°C and 95°C. The combustion process enhanced for both diesel and biofuel blend, when the coolant temperature was increased. The carbon dioxide emissions for both diesel and biofuel blend were observed to increase with temperature. The carbon monoxide, oxygen and lambda values were observed to decrease with temperature. When the engine was operated using diesel, nitrogen oxides emissions correlated in an opposite manner to smoke opacity; however, nitrogen oxides emissions and smoke opacity correlated in an identical manner for biofuel blend. Brake specific fuel consumption was observed to decrease as the temperature was increased and was higher on average when the biofuel was used. The study concludes that both biofuel blend and fossil diesel produced identical correlations between coolant temperature and engine performance. The trends of nitrogen oxides and smoke emissions with cooling temperatures were not identical to fossil diesel when biofuel blend was used in the engine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modification of TiO2 with metal oxide nanoclusters such as FeOx, NiOx has been shown to be a promising approach to the design of new photocatalysts with visible light absorption and improved electron–hole separation. To study further the factors that determine the photocatalytic properties of structures of this type, we present in this paper a first principles density functional theory (DFT) investigation of TiO2 rutile(110) and anatase(001) modified with PbO and PbO2 nanoclusters, with Pb2+ and Pb4+ oxidation states. This allows us to unravel the effect of the Pb oxidation state on the photocatalytic properties of PbOx-modified TiO2. The nanoclusters adsorb strongly at all TiO2 surfaces, creating new Pb–O and Ti–O interfacial bonds. Modification with PbO and PbO2 nanoclusters introduces new states in the original band gap of rutile and anatase. However the oxidation state of Pb has a dramatic impact on the nature of the modifications of the band edges of TiO2 and on the electron–hole separation mechanism. PbO nanocluster modification leads to an upwards shift of the valence band which reduces the band gap and upon photoexcitation results in hole localisation on the PbO nanocluster and electron localisation on the surface. By contrast, for PbO2 nanocluster modification the hole will be localised on the TiO2 surface and the electron on the nanocluster, thus giving rise to two different band gap reduction and electron–hole separation mechanisms. We find no crystal structure sensitivity, with both rutile and anatase surfaces showing similar properties upon modification with PbOx. In summary the photocatalytic properties of heterostructures of TiO2 with oxide nanoclusters can be tuned by oxidation state of the modifying metal oxide, with the possibility of a reduced band gap causing visible light activation and a reduction in charge carrier recombination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oceanic anoxic events (OAEs) were episodes of widespread marine anoxia during which large amounts of organic carbon were buried on the ocean floor under oxygen-deficient bottom waters (Schlanger and Jenkyns, 1976; Schlanger et al., 1987). OAE2, occurring at the Cenomanian/Turonian boundary (about 93.5 Myr ago) (Gradstein et al., 2004), is the most widespread and best defined OAE of the mid-Cretaceous. Although the enhanced burial of organic matter can be explained either through increased primary productivity or enhanced preservation scenarios (Schlanger and Jenkyns, 1976; Schlanger et al., 1987). the actual trigger mechanism, corresponding closely to the onset of these episodes of increased carbon sequestration, has not been clearly identified. It has been postulated that large-scale magmatic activity initially triggered OAE2 (Sinton and Duncan, 1997; Kerr, 1998, doi:10.1144/gsjgs.155.4.0619), but a direct proxy of magmatism preserved in the sedimentary record coinciding closely with the onset of OAE2 has not yet been found. Here we report seawater osmium isotope ratios in organic-rich sediments from two distant sites. We find that at both study sites the marine osmium isotope record changes abruptly just at or before the onset of OAE2. Using a simple two-component mixing equation, we calculate that over 97 per cent of the total osmium content in contemporaneous seawater at both sites is magmatic in origin, a ~30-50-fold increase relative to pre-OAE conditions. Furthermore, the magmatic osmium isotope signal appears slightly before the OAE2 -as indicated by carbon isotope ratios- suggesting a time-lag of up to ~23 kyr between magmatism and the onset of significant organic carbon burial, which may reflect the reaction time of the global ocean system. Our marine osmium isotope data are indicative of a widespread magmatic pulse at the onset of OAE2, which may have triggered the subsequent deposition of large amounts of organic matter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Luminescent excitation spectra were measured for the F and M centers in KCl; in particular, for the F band, M band, and the M2 transition. In all 3 cases, the spectra were nearly double-Gaussian in shape, and the efficiency for luminescence was nearly independent of the wavelength of the exciting light. A comparison of the absorption spectrum with the excitation spectrum of the F-band region of crystals with M centers present and oriented provided further evidence for the existence of the M2 transition of van Doorn and Haven and of Okamoto, and against the energy transfer theory of Lambe and Compton. The efficiency for luminescence of the M center upon M-band excitation was equal to the efficiency for F centers in pulse-annealed crystals of low F-center concentrations. The ratio of the efficiencies of the Ml to M2 transitions was 1.2 ± .25. The oscillator strengths of 3 of the M-center transitions in KCl relative to the oscillator strength for the F center were found to be in better agreement with the results reported by Okamoto, than with the results reported by Delbecq. The polarization of luminescence of M centers in KCl was measured at right angles to the exciting light, and was found to agree with the predictions of the van Doorn-Haven model of the M center. In NaF crystals having no absorption bands to the red side of the M band, the absorption and excitation spectra of the M band were accurately double-Gaussian over a wide range of wavelengths; the efficiency of luminescence of the M center was independent of the wavelength of the exciting light in that range; and the polarization of luminescence upon M-band excitation agreed well with the calculations based on the van DoornHaven model of the M center, In crystals in which the F band was bleached sufficiently to make it smaller in absorption height than the M band, several new color centers appeared on the red side of the M band, in contrast to the results reported by Blum; in these crystals, the polarization of luminescence of the M center upon M-band excitation disagreed strongly with theory, even though the absorptions for the new color centers were small compared to the M-band absorption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new type of space debris was recently discovered by Schildknecht in near -geosynchronous orbit (GEO). These objects were later identified as exhibiting properties associated with High Area-to-Mass ratio (HAMR) objects. According to their brightness magnitudes (light curve), high rotation rates and composition properties (albedo, amount of specular and diffuse reflection, colour, etc), it is thought that these objects are multilayer insulation (MLI). Observations have shown that this debris type is very sensitive to environmental disturbances, particularly solar radiation pressure, due to the fact that their shapes are easily deformed leading to changes in the Area-to-Mass ratio (AMR) over time. This thesis proposes a simple effective flexible model of the thin, deformable membrane with two different methods. Firstly, this debris is modelled with Finite Element Analysis (FEA) by using Bernoulli-Euler theory called “Bernoulli model”. The Bernoulli model is constructed with beam elements consisting 2 nodes and each node has six degrees of freedom (DoF). The mass of membrane is distributed in beam elements. Secondly, the debris based on multibody dynamics theory call “Multibody model” is modelled as a series of lump masses, connected through flexible joints, representing the flexibility of the membrane itself. The mass of the membrane, albeit low, is taken into account with lump masses in the joints. The dynamic equations for the masses, including the constraints defined by the connecting rigid rod, are derived using fundamental Newtonian mechanics. The physical properties of both flexible models required by the models (membrane density, reflectivity, composition, etc.), are assumed to be those of multilayer insulation. Both flexible membrane models are then propagated together with classical orbital and attitude equations of motion near GEO region to predict the orbital evolution under the perturbations of solar radiation pressure, Earth’s gravity field, luni-solar gravitational fields and self-shadowing effect. These results are then compared to two rigid body models (cannonball and flat rigid plate). In this investigation, when comparing with a rigid model, the evolutions of orbital elements of the flexible models indicate the difference of inclination and secular eccentricity evolutions, rapid irregular attitude motion and unstable cross-section area due to a deformation over time. Then, the Monte Carlo simulations by varying initial attitude dynamics and deformed angle are investigated and compared with rigid models over 100 days. As the results of the simulations, the different initial conditions provide unique orbital motions, which is significantly different in term of orbital motions of both rigid models. Furthermore, this thesis presents a methodology to determine the material dynamic properties of thin membranes and validates the deformation of the multibody model with real MLI materials. Experiments are performed in a high vacuum chamber (10-4 mbar) replicating space environment. A thin membrane is hinged at one end but free at the other. The free motion experiment, the first experiment, is a free vibration test to determine the damping coefficient and natural frequency of the thin membrane. In this test, the membrane is allowed to fall freely in the chamber with the motion tracked and captured through high velocity video frames. A Kalman filter technique is implemented in the tracking algorithm to reduce noise and increase the tracking accuracy of the oscillating motion. The forced motion experiment, the last test, is performed to determine the deformation characteristics of the object. A high power spotlight (500-2000W) is used to illuminate the MLI and the displacements are measured by means of a high resolution laser sensor. Finite Element Analysis (FEA) and multibody dynamics of the experimental setups are used for the validation of the flexible model by comparing with the experimental results of displacements and natural frequencies.