969 resultados para AIR-TEMPERATURE
Resumo:
The alkenone unsaturation paleothermometer is an important proxy to reconstruct water temperature, and is widely applied to reconstructing sea surface temperature in most oceanographic settings. Recent research indicates that long chain alkenone is preserved in lacustrine sediments, and the alkenone unsaturation has good relationship with mean annual temperature in studied lakes. Thus, the alkenone unsaturation could be used as a temperature proxy to reconstruct temperature in limnic systems. In this study, we analyzed long chain alkenone from the varved sediments in Lake Sihailongwan, northeastern China. Based on the counting varves, we established time scale during the past 1500 years. The distribution pattern in the sediment is similar with the previous study in lacustrine environment. The ratio of C37:4 methyl ketone to the sum of C37 alkenones is high. Based on the published temperature- alkenone unsaturation equation, we reconstructed the mean air temperature and July water temperature during the past 1500 years. Three major cold periods are in AD560-950, AD 1540-1600 and AD1800-1920. Three major warm periods are AD450-550, AD 950-1400 and AD 1600-1800. The Medieval Warm Period was a significant warm periods. However, the traditional “Little Ice Age” was not a persistent cold period, and interrupted by relative longer warm period. The temperature variations in this study show a general similar pattern with the summer temperature reconstruction from Shihua Cave and the winter temperature from historical documents. The temperature variations from long chain alknone record show a good agreement with solar activity (10Be data from ice core and sunspot number from tree rings). It may suggest that solar activity is most important forcing in the studied area.
Resumo:
The soil respiration and net ecosystem productivity of Kobresia littledalei meadow ecosystem was investigated at Dangxiong grassland station, one grassland field station of Lhasa Plateau Ecosystem Research Station. Soil respiration and soil heterotrophic respiration were measured at the same time by using Li6400-09 chamber in growing season of year 2004. The response of soil respiration and its components, i.e. microbial heterotrophic respiration and root respiration to biotic and abiotic factors were addressed. We studied the daily and seasonal variation on Net Ecosystem carbon Exchange (NEE) measured by eddy covariance equipments and then the regression models between the NEE and the soil temperature. Based on the researches, we analyzed the seasonal variation in grass biomass and estimated NEE combined the Net Ecosystem Productivity with heterogeneous respiration and then assessed the whether the area is carbon source or carbon sink. 1.Above-ground biomass was accumulated since the grass growth started from May; On early September the biomass reached maximum and then decreased. The aboveground net primary production (ANPP) was 150.88 g m~" in 2004. The under-ground biomass reached maximum when the aboveground start to die back. Over 80% of the grass root distributed at the soil depth from 0 to 20cm. The underground NPP was 1235.04 g m"2.. Therefore annual NPP wasl.385X103kg ha"1, i.e.6236.6 kg C ha"1. 2. The daily variation of soil respiration showed single peak curve with maximum mostly at noon and minimum 4:00-6:00 am. Daily variations were greater in June, July and August than those in September and October. Soil respiration had strong correlation with soil temperature at 5cm depth while had weaker correlation with soil moisture, air temperature, surface soil temperature, and so on. But since early September the soil respiration had a obviously correlation with soil moisture at 5cm depth. Biomass had a obviously linearity correlation with soil respiration at 30th June, 20th August, and the daytime of 27th September except at 23lh October and at nighttime of 27th September. We established the soil respiration responding to the soil temperature and to estimate the respiration variation during monsoon season (from June through August) and dry season (May, September and October). The regression between soil respiration and 5cm soil temperature were: monsoon season (June through August), Y=0.592expfl()932\ By estimating , the soil daily respiration in monsoon season is 7.798gCO2m"2 and total soil respiration is 717.44 gCC^m" , and the value of Cho is 2.54; dry season (May, September and October), Y=0.34exp°'085\ the soil daily respiration is 3.355gCO2m~2 and total soil respiration is 308.61 gCC^m", and the value of Cho is 2.34. So the total soil respiration in the grown season (From May to October) is 1026.1 g CO2IT1"2. 3. Soil heterogeneous respiration had a strong correlation with soil temperature especially with soil temperature at 5cm depth. The variation range in soil heterogeneous respiration was widely. The regression between soil heterogeneous respiration and 5cm soil temperature is: monsoon season, Y=0.106exp ' 3x; dry season, Y=0.18exp°"0833x.By estimating total soil heterotrophic respiration in monsoon season is 219.6 gCC^m"2, and the value of Cho is 3.78; While total soil heterogeneous respiration in dry season is 286.2 gCCbm"2, and the value of Cho is 2.3. The total soil heterotrophic respiration of the year is 1379.4kg C ha"1. 4. We estimated the root respiration through the balance between soil respiration and the soil heterotrophic respiration. The contribution of root respiration to total respiration was different during different period: re-greening period 48%; growing period 69%; die-back period 48%. 5. The Ecosystem respiration was relatively strong from May to October, and of which the proportion in total was 97.4%.The total respiration of Ecosystem was 369.6 g CO2 m" .we got the model of grass respiration respond to the soil temperature at 5cm depth and then estimated the daytime grass respiration, plus the nighttime NEE and daytime soil respiration. But when we estimated the grass respiration, we found the result was negative, so the estimating value in this way was not close. 6. The estimating of carbon pool or carbon sink. The NPP minus the soil heterogeneous respiration was the NEE, and it was 4857.3kg C o ha"1, which indicated that the area was the carbon sink.
Resumo:
The Meteorological Section at the scientific camp 2009–2010 conducted a series of meteorological measurements in the region of Biała Góra. The exploration area is located about 2 km east of Międzyzdroje, at the research station of the AMU Faculty of Geographical and Geological Sciences. Members of the section made measurements in the six selected points. The location of points had to reflect the specifics of the area (from the beach to the car park at the research station). The section focused on three basic measurements: air temperature (2009–2010), relative humidity (2009–2010) and atmospheric pressure (2009). This article aims to analyse a topoclimate section of cliff coast in the Wolin National Park. The compilation recognised the impact of various land surfaces, sea and altitude on the variability of air temperature and relative humidity. It notes the varied course of the daily meteorological elements analysed, which is directly related to the value of radiation balance dependent upon the intensity of direct solar radiation. In this article, particular emphasis is applied to the analysis of temperature amplitudes and humidity at different measuring points.
Resumo:
Existing Building/Energy Management Systems (BMS/EMS) fail to convey holistic performance to the building manager. A 20% reduction in energy consumption can be achieved by efficiently operated buildings compared with current practice. However, in the majority of buildings, occupant comfort and energy consumption analysis is primarily restricted by available sensor and meter data. Installation of a continuous monitoring process can significantly improve the building systems’ performance. We present WSN-BMDS, an IP-based wireless sensor network building monitoring and diagnostic system. The main focus of WSN-BMDS is to obtain much higher degree of information about the building operation then current BMSs are able to provide. Our system integrates a heterogeneous set of wireless sensor nodes with IEEE 802.11 backbone routers and the Global Sensor Network (GSN) web server. Sensing data is stored in a database at the back office via UDP protocol and can be access over the Internet using GSN. Through this demonstration, we show that WSN-BMDS provides accurate measurements of air-temperature, air-humidity, light, and energy consumption for particular rooms in our target building. Our interactive graphical user interface provides a user-friendly environment showing live network topology, monitor network statistics, and run-time management actions on the network. We also demonstrate actuation by changing the artificial light level in one of the rooms.
Resumo:
The aim of this study was to develop a methodology, based on satellite remote sensing, to estimate the vegetation Start of Season (SOS) across the whole island of Ireland on an annual basis. This growing body of research is known as Land Surface Phenology (LSP) monitoring. The SOS was estimated for each year from a 7-year time series of 10-day composited, 1.2 km reduced resolution MERIS Global Vegetation Index (MGVI) data from 2003 to 2009, using the time series analysis software, TIMESAT. The selection of a 10-day composite period was guided by in-situ observations of leaf unfolding and cloud cover at representative point locations on the island. The MGVI time series was smoothed and the SOS metric extracted at a point corresponding to 20% of the seasonal MGVI amplitude. The SOS metric was extracted on a per pixel basis and gridded for national scale coverage. There were consistent spatial patterns in the SOS grids which were replicated on an annual basis and were qualitatively linked to variation in landcover. Analysis revealed that three statistically separable groups of CORINE Land Cover (CLC) classes could be derived from differences in the SOS, namely agricultural and forest land cover types, peat bogs, and natural and semi-natural vegetation types. These groups demonstrated that managed vegetation, e.g. pastures has a significantly earlier SOS than in unmanaged vegetation e.g. natural grasslands. There was also interannual spatio-temporal variability in the SOS. Such variability was highlighted in a series of anomaly grids showing variation from the 7-year mean SOS. An initial climate analysis indicated that an anomalously cold winter and spring in 2005/2006, linked to a negative North Atlantic Oscillation index value, delayed the 2006 SOS countrywide, while in other years the SOS anomalies showed more complex variation. A correlation study using air temperature as a climate variable revealed the spatial complexity of the air temperature-SOS relationship across the Republic of Ireland as the timing of maximum correlation varied from November to April depending on location. The SOS was found to occur earlier due to warmer winters in the Southeast while it was later with warmer winters in the Northwest. The inverse pattern emerged in the spatial patterns of the spring correlates. This contrasting pattern would appear to be linked to vegetation management as arable cropping is typically practiced in the southeast while there is mixed agriculture and mostly pastures to the west. Therefore, land use as well as air temperature appears to be an important determinant of national scale patterns in the SOS. The TIMESAT tool formed a crucial component of the estimation of SOS across the country in all seven years as it minimised the negative impact of noise and data dropouts in the MGVI time series by applying a smoothing algorithm. The extracted SOS metric was sensitive to temporal and spatial variation in land surface vegetation seasonality while the spatial patterns in the gridded SOS estimates aligned with those in landcover type. The methodology can be extended for a longer time series of FAPAR as MERIS will be replaced by the ESA Sentinel mission in 2013, while the availability of full resolution (300m) MERIS FAPAR and equivalent sensor products holds the possibility of monitoring finer scale seasonality variation. This study has shown the utility of the SOS metric as an indicator of spatiotemporal variability in vegetation phenology, as well as a correlate of other environmental variables such as air temperature. However, the satellite-based method is not seen as a replacement of ground-based observations, but rather as a complementary approach to studying vegetation phenology at the national scale. In future, the method can be extended to extract other metrics of the seasonal cycle in order to gain a more comprehensive view of seasonal vegetation development.
Resumo:
This thesis is based on studies of Formica lugubris from 1972-1975. While this species' range is diminishing in Ireland, the nests are quite common in the State plantations of South Tipperary. It is not certain that the species is indigenous. Above-ground activity occurs from late-February to the end of October; foraging begins in April. Two territorial "spring-battles" between neighbouring nests are described. Most active nests produced alatae of both sexes and flights were observed on successive June mornings above l7.5°C air temperature. Both polygyny and polycaly seem to be rare. Where the nests occur commonly, the recorded densities are similar to those reported from the continent. Most nests persisted at the same site since 1973. The nest-sites are described by recording an array of nest, soil, tree, vegetation and location variables at each site. Pinus sylvestris is the most important overhead tree. Nests seem to be the same age as their surrounding plantation and reach a maximum of c. 30 years. Nearest-neighbour analysis suggests the sites are overdispersed. Forager route-fidelity was studied and long-term absence from the route, anaesthetization and "removal" of an aphid tree had little effect on this fidelity. There were no identifiable groups of workers specifically honeydew or prey-carriers. Size-duty relationships of workers participating in adult transport are described. Foraging rhythms were studied on representative days: the numbers foraging were linearly related to temperature. Route-traffic passed randomly and an average foraging trip lasted c. four hours. Annual food intake to a nest with 25 000 foragers was estimated at approximately 75 kg honeydew and 2 million prey-items. Forager-numbers and colony-size were estimated using the capture-mark - recapture method: paint marking was used for the forager estimate and an interval radiophosphorus mark, detected by autoradiography, was used for the colony-size estimate. The aphids attended by lugubris and the nest myrmecophiles are recorded.
Resumo:
The comparison of observed global mean surface air temperature (GMT) change to the mean change simulated by climate models has received much public and scientific attention. For a given global warming signal produced by a climate model ensemble, there exists an envelope of GMT values representing the range of possible unforced states of the climate system (the Envelope of Unforced Noise; EUN). Typically, the EUN is derived from climate models themselves, but climate models might not accurately simulate the correct characteristics of unforced GMT variability. Here, we simulate a new, empirical, EUN that is based on instrumental and reconstructed surface temperature records. We compare the forced GMT signal produced by climate models to observations while noting the range of GMT values provided by the empirical EUN. We find that the empirical EUN is wide enough so that the interdecadal variability in the rate of global warming over the 20(th) century does not necessarily require corresponding variability in the rate-of-increase of the forced signal. The empirical EUN also indicates that the reduced GMT warming over the past decade or so is still consistent with a middle emission scenario's forced signal, but is likely inconsistent with the steepest emission scenario's forced signal.
Resumo:
Plankton collected by the Continuous Plankton Recorder (CPR) survey were investigated for the English Channel, Celtic Sea and Bay of Biscay from 1979 to 1995. The main goal was to study the relationship between climate and plankton and to understand the factors influencing it. In order to take into account the spatial and temporal structure of biological data, a three-mode principal component analysis (PCA) was developed. It not only identified 5 zones characterised by their similar biological composition and by the seasonal and inter-annual evolution of the plankton, it also made species associations based on their location and year-to-year change. The studied species have stronger year-to-year fluctuations in abundance over the English Channel and Celtic Sea than the species offshore in the Bay of Biscay. The changes in abundance of plankton in the English Channel are negatively related to inter-annual changes of climatic conditions from December to March (North Atlantic Oscillation [NAO] index and air temperature). Thus, the negative relationship shown by Fromentin and Planque (1996; Mar Ecol Prog Ser 134:111-118) between year-to-year changes of Calanus finmarchicus abundance in the northern North Atlantic and North Sea and NAO was also found for the most abundant copepods in the Channel. However, the hypothesis proposed to explain the plankton/NAO relationship is different for this region and a new hypothesis is proposed. In the Celtic Sea, a relationship between the planktonic assemblage and the air temperature was detected, but it is weaker than for the English Channel. No relationship was found for the Bay of Biscay. Thus, the local physical environment and the biological composition of these zones appear to modify the relationship between winter climatic conditions and the year-to-year fluctuations of the studied planktonic species. This shows, therefore, that the relationship between climate and plankton is difficult to generalise.
Resumo:
This paper analyses long-term and seasonal changes in the North Sea plankton community during the period 1970 to 2008. Based on Continuous Plankton Recorder (CPR) data covering 38 yr, major changes in both phytoplankton and zooplankton abundance and community structure were identified. Regime changes were detected around 1978, 1989 and 1998. The first 2 changes have been discussed in the literature and are defined as a cold episodic event (1978) and a regime shift towards a warm dynamic regime (1989). The effect of these 2 regime changes on plankton indicators was assessed and checked against previous studies. The 1998 change represents a shift in the abundance and seasonal patterns of dinoflagellates and the dominant zooplankton group, the neritic copepods. Furthermore, environmental factors such as air temperature, wind speed and the North Atlantic water inflow were identified as potential drivers of change in seasonal patterns, and the most-likely environmental causes for detected changes were assessed. We suggest that a change in the balance of dissolved nutrients driven by these environmental factors was the cause of the latest change in plankton community structure, which in turn could have affected the North Sea fish community.
Resumo:
Marine environments are greatly affected by climate change, and understanding how this perturbation affects marine vertebrates is a major issue. In this context, it is essential to identify the environmental drivers of animal distribution. Here, we focused on the little auk (Alle alle), one of the world’s most numerous seabirds and a major component in Arctic food webs. Using a multidisciplinary approach, we show how little auks adopt specific migratory strategies and balance environmental constraints to optimize their energy budgets. Miniature electronic loggers indicate that after breeding, birds from East Greenland migrate .2000 km to overwinter in a restricted area off Newfoundland. Synoptic data available from the Continuous Plankton Recorder (CPR) indicate that this region harbours some of the highest densities of the copepod Calanus finmarchicus found in the North Atlantic during winter. Examination of large-scale climatic and oceanographic data suggests that little auks favour patches of high copepod abundance in areas where air temperature ranges from 0uC to 5uC. These results greatly advance our understanding of animal responses to extreme environmental constraints, and highlight that information on habitat preference is key to identifying critical areas for marine conservation.
Resumo:
We use a network of cores from 77 peatland sites to determine controls on peat C content and peat C accumulation over the last 2000 years (since 2 ka) across Russia's West Siberian Lowland (WSL), the world's largest wetland region. Our results show a significant influence of fossil plant composition on peat C content, with peats dominated by Sphagnum having a lower C content. Radiocarbon-derived C accumulation since 2 ka at 23 sites is highly variable from site to site, but displays a significant N–S trend of decreasing accumulation at higher latitudes. Northern WSL peatlands show relatively small C accumulation of 7 to 35 kg C m-2 since 2 ka. In contrast, peatlands south of 60°N show larger accumulation of 42 to 88 kg C m-2. Carbon accumulation since 2 ka varies significantly with modern mean annual air temperature, with maximum C accumulation found between -1 and 0°C. Rates of apparent C accumulation since 2 ka show no significant relationship to long-term Holocene averages based on total C accumulation. A GIS-based extrapolation of our site data suggests that a substantial amount (~40%) of total WSL peat C has accumulated since 2 ka, with much of this accumulation south of 60°N. The large peatlands in the southern WSL may be an important component of the Eurasian terrestrial C sink, and future warming could result in a shift northward in long-term WSL C sequestration.
Resumo:
Temperature was recorded in 23 nests of the loggerhead turtle (Caretta caretta) and control sites of nest depth at Alagadi (35 degrees 33'N, 33 degrees 47'E), Northern Cyprus, eastern Mediterranean. Control site sand temperature was found to be highly correlated with mean daily air temperature and mean nest temperature. Mean temperature in nests ranged from 29.5 degreesC to 33.2 degreesC, with mean temperature in the middle third of incubation ranging from 29.3 degreesC to 33.7 degreesC. Hatching success was significantly correlated with incubation temperature, with nests experiencing very high temperatures exhibiting low hatching success. All nests demonstrated regular diel variation in temperature with mean daily fluctuations ranging from 0.3 degreesC to 1.4 degreesC. Increase in temperature above that of the prevailing sand temperature attributed to metabolic heating was clearly demonstrated in 14 of 15 clutches, with the mean level of metabolic heating of all nests being 0.4 degreesC. However, the level of metabolic heating varied markedly throughout the incubation period with levels being significantly higher in the final third of incubation. Incubation duration was found to be significantly correlated to both the mean temperature of nests throughout the incubation period and during the middle third of incubation. The relationship between incubation duration and mean incubation temperature was used to estimate mean incubation temperatures at most major nesting sites throughout the Mediterranean from available data on incubation durations, showing that mean incubation temperature is likely to be above 29.0 degreesC at most sites in most seasons. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The aim of this study was to develop an input/output mass balance to predict phosphorus retention in a five pond constructed wetland system (CWS) at Greenmount Farm, County Antrim, Northern Ireland. The mass balance was created using 14-months of flow data collected at inflow and outflow points on a weekly basis. Balance outputs were correlated with meteorological parameters, such as daily air temperature and hydrological flow, recorded daily onsite. The mass balance showed that phosphorus retention within the system exceeded phosphorus release, illustrating the success of constructed wetland systems to remove nutrients from agricultural effluent from a dairy farm. Pond 5 showed the greatest relative retention of 86%. Comparison of retention and mean air temperature highlighted a striking difference in trends between up-gradient and down-gradient ponds, with Ponds 1 and 2 displaying a positive quadratic relationship and ponds 3 through 5 displaying a negative quadratic relationship.
Resumo:
Cough reflex hypersensitization is a key feature in patients with troublesome cough. The clinical consequence of this hypersensitive state is typified by bouts of coughing often triggered by low threshold stimuli encountered by the patient during normal daily activities including exposure to aerosols, scents and odours, a change in air temperature and when talking or laughing. These features are often perceived by cough patients to be the most disruptive aspect of their condition and undoubtedly contribute to impaired quality of life. Patients with troublesome cough may describe a range of additional symptoms and sensations including an 'urge to cough' or the feeling of an 'itch' at the back of the throat, or a choking sensation and occasionally chest pain or breathlessness. It is uncertain if these features arise due to the processes responsible for cough reflex sensitization or as a direct consequence of the underlying cough aetiology. In an attempt to understand the clinical features of a sensitized cough reflex, the spectrum of symptoms typically described by cough patients will be reviewed and possible underlying mechanisms considered. Since an intact cough reflex is crucial to airway protection, anti-tussive treatment that attenuates the hypersensitive cough state rather than abolishing the cough reflex completely would be preferable. Identifying such agents remains a clinical, scientific and pharmacological challenge. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In spite of intensive research, computational modeling of the injection stretch blow molding (ISBM) still cannot match the accuracy of other polymer processes such as injection molding. There is a lack of understanding of the interdependence among the machine parameters set up by the operators, process parameters, material behavior, and the resulting final thickness distribution and performance of the molded product. The work presented in this paper describes a set of instrumentation tools developed for investigation of the ISBM process in an industrial setting. Results are presented showing the pressure and air temperature evolution inside the mold, the stretch rod force and displacement history, and the moment of contact of the polymer with seven discrete locations on the mold.