969 resultados para ACTIVE-SITE MUTANT
Resumo:
Mutations in the p53 tumor suppressor gene are found in over 50% of human tumors and in the germline of Li-Fraumeni syndrome families. About 80% of these mutations are missense in nature. In order to study how p53 missense mutations affect tumorigenesis in vivo, we focused on the murine p53 arg-to-his mutation at amino acid 172, which corresponds to the human hot spot mutation at amino acid 175. The double replacement procedure was employed to introduce the p53 R172H mutation into the p53 locus of ES cells and mice were generated. An additional 1bp deletion in the intron 2 splice acceptor site was detected in the same allele in mice. We named this allele p53R172HΔg. This allele makes a small amount of full length p53 mutant protein. ^ Spontaneous tumor formation and survival were studied in these mice. Mice heterozygous for the p53R172HΔg allele showed 50% survival at 17 months of age, similar to the p53+/− mice. Moreover, the p53R172HΔg/+ mice showed a distinct tumor spectrum: 55% sarcomas, including osteosarcoms, fibrosarcomas and angiosarcomas; 27% carcinomas, including lung adenocarcinomas, squamous cell carcinomas, hepatocellular carcinomas and islet cell carcinomas; and 18% lymphomas. Compared to the p53+/− mice, there was a clear increase in the frequency of carcinoma development and a decrease in lymphoma incidence. Among the sarcomas that developed, fibrosarcomas in the skin were also more frequently observed. More importantly, osteosarcomas and carinomas that developed in the p53R172HΔg/+ mice metastasized at very high frequency (64% and 67%, respectively) compared with less than 10% in the p53+/− mice. The metastatic lesions were usually found in lung and liver, and less frequently in other tissues. The altered tumor spectrum in the mice and increased metastatic potential of the tumors suggested that the p53R172H mutation represents a gain-of-function. ^ Mouse embryonic fibroblasts (MEFs) from the mice homozygous and heterozygous for the p53R172HΔg allele were studied for growth characteristics, immortalization potential and genomic instability. All of the p53R172HΔg /+ MEF lines are immortalized under a 3T3 protocol while under the same protocol p53+/− MEFs are not immortalized. Karyotype analysis showed a persistent appearance of chromosome end-to-end fusion in the MEFs both homozygous and heterozygous for the p53R172HΔg allele. These observations suggest that increased genomic instability in the cells may cause the altered tumor phenotypes. ^
Resumo:
Overexpression of the receptor tyrosine kinase p185ErbB2 confers taxol resistance in breast cancers and activation of p34Cdc2 is required for taxol-induced apoptosis and cytotoxicity. Here, we investigated the underlying mechanisms and found that overexpression of p185 ErbB2 inhibits taxol-induced apoptosis through two branches to inhibit activation of p34Cdc2. ^ Overexpression of p185ErbB2 in MDA-MB-435 cells by transfection transcriptionally upregulated p21Cip1, which associates with p34Cdc2, inhibits taxol-mediated p34Cdc2 activation, delays cell entrance to G2/M phase, and thereby inhibits taxol-induced apoptosis. In p21Cip1 antisense-transfected MDA-MB-435 cells or in p21−/− MEF cells, p185ErbB2 was unable to inhibit taxol-induced apoptosis. Therefore, p21Cip1 participates in the regulation of a G2/M checkpoint that contributes to resistance to taxol-induced apoptosis in p185ErbB2-overexpressing breast cancer cells. ^ Direct phosphorylation on Tyrosine-15 of p34Cdc2 by p185 ErbB2 receptor tyrosine kinase inhibits p34Cdc2 activation. The wild-type p185ErbB2 but not the kinase-defective mutant, when overexpressed in breast cancer cells, can phosphorylate p34Cdc2 on tyrosine (Tyr)15, an inhibitory phosphorylation site of p34 Cdc2. The kinase domain of the ErbB2 receptor was sufficient for binding to p34Cdc2 and directly phosphorylating the recombinant Cdc2. Phosphospecific Cdc2-Tyr15 immunoblot analyses, immunocomplex kinase assays, and phospho-amino acid analyses revealed that p185ErbB2 specifically phosphorylates Cdc2 on Tyr15. Phosphorylation of Cdc2-Tyr15 by ErbB2 is modulated during cell cycle and corresponded with delayed cell entry into G2/M phase. The kinase-defective p185ErbB2, which incapable of phosphorylating Cdc2-Tyr15, failed to inhibit taxol-induced activation and apoptosis, whereas the wild-type and the constitutive-active p185ErbB2 did. Increased Cdc2-Tyr15 phosphorylation was found in Erb132-overexpressing tumors from breast cancer patients. Thus, direct phosphorylation of Cdc2-Tyr15 by p185 ErbB2 RTK in breast cancer cells inhibits taxol-induced p34 Cdc2 activation and apoptosis, thereby conferring taxol resistance. ^
Resumo:
Dictyostelium, a soil amoeba, is able to develop from free-living cells to multicellular fruiting bodies upon starvation using extracellular cAMP to mediate cell-cell communication, chemotaxis and developmental gene expression. The seven transmembrane G protein-coupled cAMP receptor-1 (cAR1) mediated responses, such as the activation of adenylyl cyclase and guanylyl cyclase, are transient, due to the existence of poorly understood adaptation mechanisms. For this dissertation, the powerful genetics of the Dictyostelium system was employed to study the adaptation mechanism of cAR1-mediated cAMP signaling as well as mechanisms intrinsic to cAR1 that regulate its activation. ^ We proposed that constitutively active cAR1 would cause constant adaptation, thus inhibiting downstream pathways that are essential for aggregation and development. Therefore, a screen for dominant negative cAR1 mutants was undertaken to identify constitutively active receptor mutants. Three dominant negative cAR1 mutants were identified. All appear to be constitutively active receptor mutants because they are constitutively phosphorylated and possess high affinity for cAMP. Biochemical studies showed that these mutant receptors prevented the activation of downstream effectors, including adenylyl and guanylyl cyclases. In addition, these cells also were defective in cAMP chemotaxis and cAR1-mediated gene expression. These findings suggest that the mutant receptors block development by constantly activating multiple adaptation pathways. ^ Sequence analysis revealed that these mutations (I104N, L100H) are clustered in a conserved region of the third transmembrane helix (TM3) of cAR1. To investigate the role of this region in receptor activation, one of these residues, I104, was mutated to all the other 19 possible amino acids. We found that all but the most conservative substitutions increase the receptor's affinity about 20- to 70-fold. However, only highly polar substitutions of I104, particularly basic residues, resulted in receptors that are constitutively phosphorylated and dominantly inhibit development, suggesting that highly polar substitutions not only disrupt an interaction constraining the receptor in its low-affinity, inactive state but also promote an additional conformational change that resembles the ligand-bound conformation. Our findings suggest that I104 plays a specific role in constraining the receptor in its inactive state and that substituting it with highly polar residues results in constitutive activation. ^
Resumo:
Hydrothermal circulation at oceanic spreading ridges causes sea water to penetrate to depths of 2 to 3 km in the oceanic crust where it is heated to ~400 °C before venting at spectacular 'black smokers'. These hydrothermal systems exert a strong influence on ocean chemistry (Edmond et al., 1979, doi:10.1016/0012-821X(79)90061-X), yet their structure, longevity and magnitude remain largely unresolved (Elderfield and Schultz., 1996, doi:10.1146/annurev.earth.24.1.191). The active Transatlantic Geotraverse (TAG) deposit, at 26° N on the Mid-Atlantic Ridge, is one of the largest, oldest and most intensively studied of the massive sulphide mounds that accumulate beneath black-smoker fields. Here we report ages of sulphides and anhydrites from the recently drilled (Humphris et al., 1995, doi:10.1038/377713a0) TAG substrate structures -determined from 234U-230Th systematics analysed by thermal ionization mass spectrometry. The new precise ages combined with existing data (Lalou et al., 1993, doi:10.1029/92JB01898; 1998, doi:10.2973/odp.proc.sr.158.214.1998) show that the oldest material (11,000 to 37,000 years old) forms a layer across the centre of the deposit with younger material (2,300-7,800 years old) both above and below. This stratigraphy confirms that much of the sulphide and anhydrite are precipitated within the mound by mixing of entrained sea water with hydrothermal fluid (James and Elderfield, 1996, doi:10.1130/0091-7613(1996)024<1147:COOFFA>2.3.CO;2). The age distribution is consistent with episodic activity of the hydrothermal system recurring at intervals of up to 2,000 years.
Resumo:
K-Ar whole-rock ages have been obtained for 30 samples from Sites 782 and 786, Ocean Drilling Program Leg 125 in the Izu-Bonin (Ogasawara) forearc region. They form a trimodal spread of ages between 9 Ma and 44 Ma and are, with a few exceptions, consistent with the inferred lithostratigraphy. The ages have been interpreted in terms of at least two distinct episodes of magmatic and/or hydrothermal activity. A group of ten samples, including the lava flows, gave an isochron age of 41.3 ± 0.5 Ma (middle-late Eocene). This is thought to represent the age of the principal magmatic development of the volcanic forearc basement, and is comparable to published ages on equivalent rocks from other parts of the forearc basement high (e.g., the Ogasawara Islands). It may be significant that this age is slightly younger than the timing of major plate reorganization in the Western Pacific at about 43 Ma. This was followed by a minor episode of intrusive magmatism at 34.6 ± 0.7 Ma (early Oligocene) which appears to have reset the ages of some of the earlier units. This event probably corresponds to the initiation of rifting of the "proto-arc" to form the Parece Vela Basin. Boninitic samples were erupted during both episodes of magmatism, the earlier being of low-Ca boninite type and the later being of medium- and high-Ca types. It is also possible that a third episode of intrusive magmatism affected the Izu-Bonin forearc region at both Sites 782 and 786 at about 17 Ma. This would be consistent with magmatic activity elsewhere in the region during the Miocene, associated with the end of active spreading in the Parece Vela Basin and the start of arc activity in the West Mariana Ridge.
Resumo:
Ocean Drilling Program (ODP) Leg 134 was located in the central part of the New Hebrides Island Arc, in the Southwest Pacific. Here the d'Entrecasteaux Zone of ridges, the North d'Entrecasteaux Ridge and South d'Entrecasteaux Chain, is colliding with the arc. The region has a Neogene history of subduction polarity reversal, ridge-arc collision, and back-arc spreading. The reasons for drilling in this region included the following: (1) to determine the differences in the style and time scale of deformation associated with the two ridge-like features (a fairly continuous ridge and an irregularly topographic seamount chain) that are colliding with the central New Hebrides Island Arc; (2) to document the evolution of the magmatic arc in relation to the collision process and possible Neogene reversal of subduction; and (3) to understand the process of dewatering of a small accretionary wedge associated with ridge collision and subduction. Seven sites were occupied during the leg, five (Sites 827-831) were located in the d'Entrecasteaux Zone where collision is active. Three sites (Sites 827, 828, and 829) were located where the North d'Entrecasteaux Ridge is colliding, whereas two sites (Sites 830 and 831) were located in the South d'Entrecasteaux Chain collision zone. Sites 828 (on North d'Entrecasteaux Ridge) and 831 (on Bougainville Guyot) were located on the Pacific Plate, whereas all other sites were located on a microplate of the North Fiji Basin. Two sites (Sites 832 and 831) were located in the intra-arc North Aoba Basin. Results of Leg 134 drilling showed that forearc deformation associated with the North d'Entrecasteaux Ridge and South d'Entrecasteaux Chain collision is distinct and different. The d'Entrecasteaux Zone is an Eocene subduction/obduction complex with a distinct submerged island arc. Collision and subduction of the North d'Entrecasteaux Ridge results in off scraping of ridge material and plating of the forearc with thrust sheets (flakes) as well as distinct forearc uplift. Some offscraped sedimentary rocks and surficial volcanic basement rocks of the North d'Entrecasteaux Ridge are being underplated to the New Hebrides Island forearc. In contrast, the South d'Entrecasteaux Chain is a serrated feature resulting in intermittent collision and subduction of seamounts. The collision of the Bougainville Guyot has indented the forearc and appears to be causing shortening through thrust faulting. In addition, we found that the Quaternary relative convergence rate between the New Hebrides Island Arc at the latitude of Espiritu Santo Island is as high as 14 to 16 cm/yr. The northward migration rate of the d'Entrecasteaux Zone was found the be ~2 to 4 cm/yr based on the newly determined Quaternary relative convergence rate. Using these rates we established the timing of initial d'Entrecasteaux Zone collision with the arc at ~3 Ma at the latitude of Epi Island and fixed the impact of the North d'Entrecasteaux Ridge upon Espiritu Santo Island at early Pleistocene (between 1.89 and 1.58 Ma). Dewatering is occurring in the North d'Entrecasteaux Ridge accretionary wedge, and the wedge is dryer than other previously studied accretionary wedges, such as Barbados. This could be the result of less sediment being subducted at the New Hebrides compared to the Barbados.
Resumo:
Central Hill is in the northern part of the Escanaba Trough, which is a sediment-filled rift of southern Gorda Ridge. Central Hill is oriented north-south and is associated with extensive sulfide deposits. Hydrothermal alteration of sediment from Site 1038 was studied through analyses of mineralogy and the chemistry and oxygen isotopic compositions of one nearly pure clay sample. In addition, Site 1037 was drilled to establish the character of the unaltered sedimentary sequence away from the hydrothermal centers of the Northern Escanaba Trough Study Area (NESCA). Mineralogy of the clay-size fraction of turbiditic and hemipelagic sediments of Hole 1037B are predominantly quartz, feldspar, pyroxene, illite, chlorite, and smectite, representing continental-derived material. Cores from Hole 1038I, located within the area of Central Hill but away from known active vent areas, recovered minor amounts of chlorite/smectite mixed-layer clay in the fine fraction, indicating a low-temperature hydrothermal alteration. The 137.4-m-thick sediment section of Hole 1038G is located in an area of low-temperature venting. The uppermost sample is classified as chlorite/smectite mixed layer, which is underlain by chlorite as the dominant mineral. The lowermost deposits of Hole 1038G are also characterized by chlorite/smectite mixed-layer clay. In comparison to Hole 1038I, the mineralogic sequence of Hole 1038G reflects increased chloritization. Intensely altered sediment is almost completely replaced by hydrothermal chlorite in subsurface sediments of Hole 1038H. Alteration to chlorite is characterized by depletion in Na, K, Ti, Ca, Sr, Cs, and Tl and enrichment in Ba. Further, Eu depletion reflects a high-temperature plagioclase alteration. A chlorite 18O value of 2.6 indicates formation at a temperature of ~190°C. It is concluded that the authigenic chlorite in Hole 1038H formed by an active high-temperature fluid flow in the shallow subsurface.
Resumo:
In situ secondary ionization mass spectrometry (SIMS) analyses of oxygen isotopes in authigenic calcite veins were obtained from an active thrust fault system drilled at Ocean Drilling Program (ODP) Site 892 (44°40.4'N, 125°07.1'W) along the Cascadia subduction margin. The average d18OPDB value of all samples is -9.9 per mil and the values are the lowest of any measured in active accretionary prisms. Ranges in individual veins can be as much as 19.6 per mil. There is an isotopic stratigraphy related to the structural stratigraphy. Mean isotope values in the hanging wall, thrust, and footwall are -14.4 per mil, -9.5 per mil, and -5.2 per mil, respectively. Several veins and crosscutting vein sequences show a general trend from lower to higher d18O values over time. Isotopic and textural data indicate several veins formed by a crack-seal mechanism and growth into open fractures. The best explanation for the strong 18O depletions is periodic rapid flow from 2-3 km deeper in the prism. Relatively narrow isotopic ranges for most veins suggest that fluids were derived from a similar source depth for each episode of fluid pulse and calcite crystallization. Structural and mass balance considerations are consistent with a record preserved in the veins of ten to hundreds of thousands of years. The fluid pulses may relate to periodic large earthquake events such as those recognized in the paleoseismicity records from the Cascadia margin.
Resumo:
This chemical and petrologic study of rocks from Site 448 on the Palau-Kyushu Ridge is designed to answer some fundamental questions concerning the volcanic origin of remnant island arcs. According to the reconstruction of the Western Pacific prior to about 45 m.y. ago (Hilde et al., 1977), the site of the Palau-Kyushu Ridge was a major transform fault. From a synthesis of existing geological and geophysical data (R. Scott et al., this volume), it appears that the ridge originated by subduction of the Pacific plate under the West Philippine Basin. Thus the Palau-Kyushu Ridge should be a prime example of both initial volcanism of an incipient arc formed by interaction of oceanic lithospheric plates and remnant-arc volcanic evolution. The Palau-Kyushu Ridge was an active island arc from about 42 to 30 m.y. ago, after which initiation of back-arc spreading formed the Parece Vela Basin (R. Scott et al., this volume; Karig, 1975a). This spreading left the western portion of the ridge as a remnant arc that separates the West Philippine Basin from the Parece Vela Basin. In spite of numerous oceanographic expeditions to the Philippine Sea, including the two previous DSDP Legs 6 and 31 (Fischer, Heezen et al., 1971; Karig, Ingle et al., 1975), and even though the origins of inter-arc basins have been linked by various hypotheses to that of remnant island arcs (Karig, 1971, 1972, 1975a, and 1975b; Gill, 1976; Uyeda and Ben-Avraham, 1972; Hilde et al., 1977), very little hard data are available on inactive remnant arcs.
Resumo:
The active plate margin of South America is characterized by a frequent occurrence of large and devastating subduction earthquakes. Here we focus on marine sedimentary records off Southern Chile that are archiving the regional paleoseismic history over the Holocene and Late Pleistocene. The investigated records - Ocean Drilling Program (ODP) Site 1232 and SONNE core 50SL - are located at ~40°S and ~38°S, within the Perú-Chile trench, and are characterized by frequent interbedded strata of turbiditic and hemipelagic origin. On the basis of the sedimentological characteristics and the association with the active margin of Southern Chile, we assume that the turbidites are mainly seismically triggered, and may be considered as paleo-megaearthquake indicators. However, the long-term changes in turbidite recurrence times appear to be strongly influenced by climate and sea level changes as well. During sea level highstands in the Holocene and Marine Isotope Stage (MIS) 5, recurrence times of turbiditic layers are substantially higher, primarily reflecting a climate-induced reduction of sediment availability and enhanced slope stability. In addition, segmented tectonic uplift changes and related drainage inversions likely influenced the postglacial decrease in turbidite frequencies. Glacial turbidite recurrence times (including MIS 2, MIS 3, cold substages of MIS 5, and MIS 6), on the other hand, are within the same order of magnitude as earthquake recurrence times derived from the historical record and other terrestrial paleoseismic archives of the region. Only during these cold stages sediment availability and slope instability were high enough to enable recording of the complete sequence of large earthquakes in Southern Chile. Our data thus suggest that earthquake recurrence times on the order of 100 to 200 years are a persistent feature at least during the last glacial period.
Resumo:
The Ocean Drilling Program (ODP) Site 959 was drilled in the northern border of the Côte d'Ivoire-Ghana Ridge at a water depth of 2100 m. Pleistocene total thickness does not exceed 20 m. Winnowing processes resulted in a low accumulation rate and notable stratigraphic hiatuses. During the Late Pleistocene, bottom circulation was very active and controlled laminae deposition (contourites) which increased the concentration of glauconitic infillings of foraminifera, and of volcanic glass and blue-green grains more rarely, with one or several subordinate ferromagnesian silicates. Volcanic glass generally was X-ray amorphous and schematically classified as basic to intermediate (44-60% SiO2). Opal-A or opal-CT suggested the beginning of the palagonitisation process, and previous smectitic deposits may have been eroded mechanically. The blue-green grains presented two main types of mineralogic composition: (1) neoformed K, Fe-smectite associated with zeolite (like phillipsite) and unequal amounts of quartz and anorthite; (2) feldspathic grains dominated by albite but including quartz, volcanic glass and smectites as accessory components. They were more or less associated with the volcanic glass. On the basis of their chemical composition, the genetic relationship between the blue-green grains and the volcanic glass seemed to be obvious although some heterogeneous grains seemed to be primary ignimbrite and not the result of glass weathering. The most reasonable origin of these pyroclastic ejecta would be explosive events from the Cameroon Volcanic Ridge, especially from the Sao Thome and Principe Islands and Mount Cameroon area. This is supported both by grain geochemistry and the time of volcanic activity, i.e. Pleistocene. After westward wind transport (some 1200 km) and ash fall-out, the subsequent winnowing by bottom currents controlled the concentration of the volcanic grains previously disseminated inside the hemipelagic sediment. Palagonitisation, and especially phillipsite formation, may result from a relatively rapid reaction during burial diagenesis (<1 m.y.), in deep-sea deposits at relatively low sedimentation rate. However, it cannot be excluded that the weathering had begun widely on the Cameroon Ridge before the explosive event.
Resumo:
Strontium- and oxygen-isotopic measurements of samples recovered from the Trans-Atlantic Geotraverse (TAG) hydrothermal mound during Leg 158 of the Ocean Drilling Program provide important constraints on the nature of fluid-rock interactions during basalt alteration and mineralization within an active hydrothermal deposit. Fresh Mid-Ocean Ridge Basalt (MORB), with a 87Sr/86Sr of 0.7026, from the basement beneath the TAG mound was altered at both low and high temperatures by seawater and altered at high temperature by near end-member black smoker fluids. Pillow breccias occurring beneath the margins of the mound are locally recrystallized to chlorite by interaction with large volumes of conductively heated seawater (>200°C). The development of a silicified, sulfide-mineralized stockwork within the basaltic basement follows a simple paragenetic sequence of chloritization followed by mineralization and the development of a quartz+pyrite+paragonite stockwork cut by quartz-pyrite veins. Initial alteration involved the development of chloritic alteration halos around basalt clasts by reaction with a Mg-bearing mixture of upwelling, high-temperature (>300°C), black smoker-type fluid with a minor (<10%) proportion of seawater. Continued high-temperature (>300°C) interaction between the wallrock and these Mg-bearing fluids results in the complete recrystallization of the wallrock to chlorite+quartz+pyrite. The quartz+pyrite+paragonite assemblage replaces the chloritized basalts, and developed by reaction at 250-360°C with end-member hydrothermal fluids having 87Sr/86Sr ~0.7038, similar to present-day vent fluids. The uniformity of the 87Sr/86Sr ratios of hydrothermal assemblages throughout the mound and stockwork requires that the 87Sr/86Sr ratio of end-member hydrothermal fluids has remained relatively constant for a time period longer than that required to change the interior thermal structure and plumbing network of the mound and underlying stockwork. Precipitation of anhydrite in breccias and as late-stage veins throughout most of the mound and stockwork, down to at least 125 mbsf, records extensive entrainment of seawater into the hydrothermal deposit. 87Sr/86Sr ratios indicate that most of the anhydrite formed from ~2:1 mixture of seawater and black smoker fluids (65%±15% seawater). Oxygen-isotopic compositions imply that anhydrite precipitated at temperatures between 147°C and 270°C and require that seawater was conductively heated to between 100°C and 180°C before mixing and precipitation occurred. Anhydrite from the TAG mound has a Sr-Ca partition coefficient Kd ~0.60±0.28 (2 sigma). This value is in agreement with the range of experimentally determined partition coefficients (Kd ~0.27-0.73) and is similar to those calculated for anhydrite from active black smoker chimneys from 21°N on the East Pacific Rise. The d18O (for SO4) of TAG anhydrite brackets the value of seawater sulfate oxygen (~9.5?). Dissolution of anhydrite back into the oceans during episodes of hydrothermal quiescence provides a mechanism of buffering seawater sulfate oxygen to an isotopically light composition, in addition to the precipitation and dissolution of anhydrite within the oceanic basement during hydrothermal recharge at the mid-ocean ridges.
Resumo:
The tholeiitic basalts and microdolerites that comprise the Cretaceous igneous complex in the Nauru Basin in the western equatorial Pacific have moderate ranges in initial 87Sr/86Sr (0.70347 - 0.70356), initial 143Nd/144Nd (0.51278 - 0.51287), and measured 206Pb/204Pb (18.52 - 19.15), 207Pb/204Pb (15.48 - 15.66) and 208Pb/204Pb (38.28 - 38.81). These isotopic ratios overlap with those of both oceanic island basalts (OIB) and South Atlantic and Indian mid-ocean ridge basalts (MORB). However, the petrography, mineralogy, and bulk rock chemistry of the igneous complex are more similar to MORB than to OIB. Also, the rare earth element contents of Nauru Basin igneous rocks are uniformly depleted in light elements (La/Sm(ch) < 1) indicative of a mantle source compositionally similar to that of MORB. These results suggest that the igneous complex is the top of the original ocean crust in the Nauru Basin, and that the notion that the crust must be 15 to 35 m.y. older based on simple extrapolation and identification of the M-sequence magnetic lineations (Larson et al., 1981, doi:10.2973/dsdp.proc.61.1981; Moberly et al., 1985, doi:10.2973/dsdp.proc.81.1984) may be invalid because of a more complicated tectonic setting. The igneous complex most probably was extruded from an ocean ridge system located near the anomalously hot, volcanically active, and isotopically distinct region in the south central Pacific which has been in existence since c. 120 Ma.